Learn R Programming

ABSSeq (version 1.8.0)

ReplaceOutliersByMAD: Replacing outliers by moderated MAD

Description

Function for replacing the outliers by MAD

Usage

ReplaceOutliersByMAD(object, replaceOutlier = TRUE, cutoff = 2, baseMean = 100, limitMad = 0.707, spriors = 2, Caseon = TRUE)

Arguments

object
a ABSSeq object with element of 'counts' and 'normMethod', see the constructor functions ABSDataSet.
replaceOutlier
switch for replacing, default is TRUE.
cutoff
cutoff of moderating MAD for outliers, default is 2
baseMean
parameter for limiting the trimming at low expression level by baseMean/(sample size), default is 100.
limitMad
the minimal prior for moderating MAD, default is set to 0.707, which is usually the highest standard deviation at expression level of 1
spriors
prior weight size for prior MAD, default is 2
Caseon
switch for dealing with outlier trimming at sample size of 2

Value

a ABSDataSet object with normalized counts after trimming (replaceOutlier=TRUE) or not (replaceOutlier=FALSE). Use the excounts to show it. Use results with name 'trimmed' to view the trimming status.

Details

Given a matrix of count data, this function replacing the outliers by MAD. Noticely, this function also provides part of parameters for DEs calling. It is called by callParameter

Examples

Run this code
data(simuN5)
obj <- ABSDataSet(counts=simuN5$counts, groups=factor(simuN5$groups))
obj <- normalFactors(obj)
obj <- ReplaceOutliersByMAD(obj)
head(excounts(obj))
head(results(obj,c("trimmed")))

Run the code above in your browser using DataLab