Learn R Programming

ACSWR (version 1.0)

hw: Height-Weight Covariance Study

Description

The data set highlights the importance of handling covariance when such information is available. If the covariance is not incorporated, hypothesis testing may lead to entirely difference conclusion.

Usage

data(hw)

Arguments

Format

A data frame with 20 observations on the following 2 variables.
Height
the height of an individual
Weight
the weight of an individual

References

Rencher, A.C. (2002). Methods of Multivariate Analysis, 2e. J. Wiley.

Examples

Run this code
data(hw)
sigma0 <- matrix(c(20, 100, 100, 1000),nrow=2)
sigma <- var(hw)
v <- nrow(hw)-1
p <- ncol(hw)
u <- v*(log(det(sigma0))-log(det(sigma)) + sum(diag(sigma%*%solve(sigma0)))-p)
u1 <- (1- (1/(6*v-1))*(2*p+1 - 2/(p+1)))*u
u;u1;qchisq(1-0.05,p*(p+1)/2)

Run the code above in your browser using DataLab