Learn R Programming

AER (version 1.2-14)

OECDGrowth: OECD Macroeconomic Data

Description

Cross-section data on OECD countries, used for growth regressions.

Usage

data("OECDGrowth")

Arguments

Format

A data frame with 22 observations on the following 6 variables.

gdp85

real GDP in 1985 (per person of working age, i.e., age 15 to 65), in 1985 international prices.

gdp60

real GDP in 1960 (per person of working age, i.e., age 15 to 65), in 1985 international prices.

invest

average of annual ratios of real domestic investment to real GDP (1960--1985).

school

percentage of the working-age population that is in secondary school.

randd

average of annual ratios of gross domestic expenditure on research and development to nominal GDP (of available observations during 1960--1985).

popgrowth

annual population growth 1960--1985, computed as log(pop85/pop60)/25.

References

Mankiw, N.G., Romer, D., and Weil, D.N. (1992). A Contribution to the Empirics of Economic Growth. Quarterly Journal of Economics, 107, 407--437.

Nonneman, W., and Vanhoudt, P. (1996). A Further Augmentation of the Solow Model and the Empirics of Economic Growth. Quarterly Journal of Economics, 111, 943--953.

Zaman, A., Rousseeuw, P.J., and Orhan, M. (2001). Econometric Applications of High-Breakdown Robust Regression Techniques. Economics Letters, 71, 1--8.

See Also

GrowthDJ, GrowthSW

Examples

Run this code
 if(!requireNamespace("MASS")) {
  if(interactive() || is.na(Sys.getenv("_R_CHECK_PACKAGE_NAME_", NA))) {
    stop("not all packages required for the example are installed")
  } else q() }
data("OECDGrowth")

## Nonneman and Vanhoudt (1996), Table II
cor(OECDGrowth[, 3:6])
cor(log(OECDGrowth[, 3:6]))

## textbook Solow model
## Nonneman and Vanhoudt (1996), Table IV, and
## Zaman, Rousseeuw and Orhan (2001), Table 2
so_ols <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) + log(popgrowth+.05),
  data = OECDGrowth)
summary(so_ols)

## augmented and extended Solow growth model
## Nonneman and Vanhoudt (1996), Table IV
aso_ols <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) +
  log(school) + log(popgrowth+.05), data = OECDGrowth)
eso_ols <- lm(log(gdp85/gdp60) ~ log(gdp60) + log(invest) +
  log(school) + log(randd) + log(popgrowth+.05), data = OECDGrowth)

## determine unusual observations using LTS
library("MASS")
so_lts <- lqs(log(gdp85/gdp60) ~ log(gdp60) +  log(invest) + log(popgrowth+.05),
  data = OECDGrowth, psamp = 13, nsamp = "exact")

## large residuals
nok1 <- abs(residuals(so_lts))/so_lts$scale[2] > 2.5
residuals(so_lts)[nok1]/so_lts$scale[2]

## high leverage
X <- model.matrix(so_ols)[,-1]
cv <- cov.rob(X, nsamp = "exact")
mh <- sqrt(mahalanobis(X, cv$center, cv$cov))
nok2 <- mh > 2.5
mh[nok2]

## bad leverage
nok <- which(nok1 & nok2)
nok

## robust results without bad leverage points
so_rob <- update(so_ols, subset = -nok)
summary(so_rob)
## This is similar to Zaman, Rousseeuw and Orhan (2001), Table 2
## but uses exact computations (and not sub-optimal results
## for the robust functions lqs and cov.rob)

Run the code above in your browser using DataLab