# NOT RUN {
## load data and MASS package
data("EquationCitations", package = "AER")
library("MASS")
## convenience function for summarizing NB models
nbtable <- function(obj, digits = 3) round(cbind(
"OR" = exp(coef(obj)),
"CI" = exp(confint.default(obj)),
"Wald z" = coeftest(obj)[,3],
"p" = coeftest(obj)[, 4]), digits = digits)
#################
## Replication ##
#################
## Table 1
m1a <- glm.nb(othercites ~ I(equations/pages) * pages + journal,
data = EquationCitations)
m1b <- update(m1a, nontheocites ~ .)
m1c <- update(m1a, theocites ~ .)
nbtable(m1a)
nbtable(m1b)
nbtable(m1c)
## Table 2
m2a <- glm.nb(
othercites ~ (I(mainequations/pages) + I(appequations/pages)) * pages + journal,
data = EquationCitations)
m2b <- update(m2a, nontheocites ~ .)
m2c <- update(m2a, theocites ~ .)
nbtable(m2a)
nbtable(m2b)
nbtable(m2c)
###############
## Extension ##
###############
## nonlinear page effect: use log(pages) instead of pages+interaction
m3a <- glm.nb(othercites ~ I(equations/pages) + log(pages) + journal,
data = EquationCitations)
m3b <- update(m3a, nontheocites ~ .)
m3c <- update(m3a, theocites ~ .)
## nested models: allow different equation effects over journals
m4a <- glm.nb(othercites ~ journal / I(equations/pages) + log(pages),
data = EquationCitations)
m4b <- update(m4a, nontheocites ~ .)
m4c <- update(m4a, theocites ~ .)
## nested model best (wrt AIC) for all responses
AIC(m1a, m2a, m3a, m4a)
nbtable(m4a)
AIC(m1b, m2b, m3b, m4b)
nbtable(m4b)
AIC(m1c, m2c, m3c, m4c)
nbtable(m4c)
## equation effect by journal/response
## comb nontheo theo
## AmNat =/- - +
## Evolution =/+ = +
## ProcB - - =/+
# }
Run the code above in your browser using DataLab