# NOT RUN {
## Greene (2003), Example 17.5
data("Equipment")
## Cobb-Douglas
fm_cd <- lm(log(valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment)
## generalized Cobb-Douglas with Zellner-Revankar trafo
GCobbDouglas <- function(theta)
lm(I(log(valueadded/firms) + theta * valueadded/firms) ~ log(capital/firms) + log(labor/firms),
data = Equipment)
## yields classical Cobb-Douglas for theta = 0
fm_cd0 <- GCobbDouglas(0)
## ML estimation of generalized model
## choose starting values from classical model
par0 <- as.vector(c(coef(fm_cd0), 0, mean(residuals(fm_cd0)^2)))
## set up likelihood function
nlogL <- function(par) {
beta <- par[1:3]
theta <- par[4]
sigma2 <- par[5]
Y <- with(Equipment, valueadded/firms)
K <- with(Equipment, capital/firms)
L <- with(Equipment, labor/firms)
rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L)
lhs <- log(Y) + theta * Y
rval <- sum(log(1 + theta * Y) - log(Y) +
dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE))
return(-rval)
}
## optimization
opt <- optim(par0, nlogL, hessian = TRUE)
## Table 17.2
opt$par
sqrt(diag(solve(opt$hessian)))[1:4]
-opt$value
## re-fit ML model
fm_ml <- GCobbDouglas(opt$par[4])
deviance(fm_ml)
sqrt(diag(vcov(fm_ml)))
## fit NLS model
rss <- function(theta) deviance(GCobbDouglas(theta))
optim(0, rss)
opt2 <- optimize(rss, c(-1, 1))
fm_nls <- GCobbDouglas(opt2$minimum)
-nlogL(c(coef(fm_nls), opt2$minimum, mean(residuals(fm_nls)^2)))
# }
Run the code above in your browser using DataLab