Learn R Programming

AER (version 1.2-9)

USGasG: US Gasoline Market Data (1960--1995, Greene)

Description

Time series data on the US gasoline market.

Usage

data("USGasG")

Arguments

Format

An annual multiple time series from 1960 to 1995 with 10 variables.

gas

Total US gasoline consumption (computed as total expenditure divided by price index).

price

Price index for gasoline.

income

Per capita disposable income.

newcar

Price index for new cars.

usedcar

Price index for used cars.

transport

Price index for public transportation.

durable

Aggregate price index for consumer durables.

nondurable

Aggregate price index for consumer nondurables.

service

Aggregate price index for consumer services.

population

US total population in millions.

References

Greene, W.H. (2003). Econometric Analysis, 5th edition. Upper Saddle River, NJ: Prentice Hall.

See Also

Greene2003, USGasB

Examples

Run this code
# NOT RUN {
data("USGasG", package = "AER")
plot(USGasG)

## Greene (2003)
## Example 2.3
fm <- lm(log(gas/population) ~ log(price) + log(income) + log(newcar) + log(usedcar),
  data = as.data.frame(USGasG))
summary(fm)

## Example 4.4
## estimates and standard errors (note different offset for intercept)
coef(fm)
sqrt(diag(vcov(fm)))
## confidence interval
confint(fm, parm = "log(income)")
## test linear hypothesis
linearHypothesis(fm, "log(income) = 1")

## Example 7.6
## re-used in Example 8.3
trend <- 1:nrow(USGasG)
shock <- factor(time(USGasG) > 1973, levels = c(FALSE, TRUE),
  labels = c("before", "after"))

## 1960-1995
fm1 <- lm(log(gas/population) ~ log(income) + log(price) + log(newcar) +
  log(usedcar) + trend, data = as.data.frame(USGasG))
summary(fm1)
## pooled
fm2 <- lm(log(gas/population) ~ shock + log(income) + log(price) + log(newcar) +
  log(usedcar) + trend, data = as.data.frame(USGasG))
summary(fm2)
## segmented
fm3 <- lm(log(gas/population) ~ shock/(log(income) + log(price) + log(newcar) +
  log(usedcar) + trend), data = as.data.frame(USGasG))
summary(fm3)

## Chow test
anova(fm3, fm1)
library("strucchange")
sctest(log(gas/population) ~ log(income) + log(price) + log(newcar) +
  log(usedcar) + trend, data = USGasG, point = c(1973, 1), type = "Chow")
## Recursive CUSUM test
rcus <- efp(log(gas/population) ~ log(income) + log(price) + log(newcar) +
  log(usedcar) + trend, data = USGasG, type = "Rec-CUSUM")
plot(rcus)
sctest(rcus)
## Note: Greene's remark that the break is in 1984 (where the process crosses its
## boundary) is wrong. The break appears to be no later than 1976.

## More examples can be found in:
## help("Greene2003")
# }

Run the code above in your browser using DataLab