# Simulate a data set with the default arguments and look at the structure of the output:
tmp <- simDCM()
str(tmp)
# \donttest{
# Default arguments, without plots
str(data <- simDCM(show.plot = FALSE))
# More examples:
str(data <- simDCM(nspecies = 200)) # More species (looks great)
str(data <- simDCM(nspecies = 1)) # A single species (ha, works !)
str(data <- simDCM(nsites = 267)) # More sites
str(data <- simDCM(nsites = 1)) # A single site
str(data <- simDCM(nsurveys = 10)) # More visits
str(data <- simDCM(nyears = 25)) # More years
str(data <- simDCM(nyears = 2)) # Just two years
try(data <- simDCM(nyears = 1)) # A single year ... error
# No species heterogeneity in parameters of initial occupancy
str(data <- simDCM(sig.lpsi1 = 0, sig.beta.lpsi1 = 0))
# No species heterogeneity in parameters of persistence
str(data <- simDCM(sig.lphi = 0, sig.beta.lphi = 0))
# No species heterogeneity in parameters of colonisation
str(data <- simDCM(sig.lgamma = 0, sig.beta.lgamma = 0))
# No species heterogeneity in parameters of detection
str(data <- simDCM(sig.lp = 0, sig.beta.lp = 0))
# No annual variation in rates
str(data <- simDCM(range.mean.phi = c(0.8, 0.8), range.mean.gamma = c(0.3, 0.3),
range.mean.p = c(0.6, 0.6)))
# Function arguments that lead to much structure (no zero arguments)
str(data <- simDCM(nspecies = 200, nsites = 267, nsurveys = 3, nyears = 25,
mean.psi1 = 0.4, sig.lpsi1 = 3, mu.beta.lpsi1 = 1, sig.beta.lpsi1 = 3,
range.mean.phi = c(0.5, 1), sig.lphi = 3, mu.beta.lphi = 1,
sig.beta.lphi = 3, range.mean.gamma = c(0, 0.5),
sig.lgamma = 3, mu.beta.lgamma = -1, sig.beta.lgamma = 3,
range.mean.p = c(0.1, 0.9), sig.lp = 3, mu.beta.lp = 1, sig.beta.lp = 3,
range.beta1.survey = c(-2, -0.5), range.beta2.survey = c(0, 2),
trend.sd.site = c(0, 0), trend.sd.survey = c(0, 0), show.plot = TRUE))
# Not every occurring species will be detected
set.seed(1)
str(data <- simDCM(nspecies = 200, nsites = 20, nsurveys = 2, nyears = 10,
mean.psi1 = 0.1, sig.lpsi1 = 5,
range.mean.phi = c(0.3, 0.3), sig.lphi = 5,
range.mean.gamma = c(0.1, 0.1), sig.lgamma = 5,
range.mean.p = c(0.1, 0.1), sig.lp = 5) )
# Pull out data from species 5
ysp5 <- data$y[,,,5]
# Pull out data from year 1
yyr1 <- data$y[,,1,]
# }
Run the code above in your browser using DataLab