# Generate data with the default arguments and look at the structure
str(dat <- simOccSpatial())
str(dat <- simOccSpatial(show.plots=FALSE))
# \donttest{
# More surveys
str(dat<- simOccSpatial(nsurveys = 10))
# Minimal number of surveys is 1
str(dat<- simOccSpatial(nsurveys = 1))
# A truly ubiquitous species
str(dat <- simOccSpatial(mean.psi = 1))
# Only negative linear effect of elevation
str(dat <- simOccSpatial(beta = c(2, 0)))
# No effect of elevation at all (see effects of spatial field now clearly)
str(dat <- simOccSpatial(beta = c(0, 0)))
# Perfect detection (p = 1)
str(dat <- simOccSpatial(mean.p = 1))
# No effect in detection of forest cover
str(dat <- simOccSpatial(alpha = c(0, -1)))
# No effect in detection of wind speed (see neatly forest effect now)
str(dat <- simOccSpatial(alpha = c(-1, 0)))
# Sample only 100 quadrats
str(dat <- simOccSpatial(sample.size = 100))
# Sample all 2500 quadrats
str(dat <- simOccSpatial(sample.size = 2500))
# Larger variance of the multivariate Gaussian Random variable in the random field
# (this will increase the effect of the field on occupancy and detection)
str(dat <- simOccSpatial(variance.RF = 10))
# No spatial autocorrelation (Variant 1: set variance to 0)
str(dat <- simOccSpatial(variance.RF = 0))
# No spatial autocorrelation (Variant 2: set theta very close to 0,
# but not quite 0, otherwise function breaks)
str(dat <- simOccSpatial(theta.RF = 0.0001))
# Larger value of theta.RF gives larger 'islands'
#try(str(dat <- simOccSpatial(theta.RF = 100))) # Works with RandomFields
# }
Run the code above in your browser using DataLab