Learn R Programming

AHSurv (version 0.1.0)

AEHMLE: Relative Survival AH model.

Description

The flexible parametric accelerated excess hazards (AEH) model's maximum likelihood estimation, log-likelihood, and information criterion. Baseline hazards:NGLL, GLL, KW,EW, MLL, PGW, GG, MKW, Log-logistic, Weibull, Log-normal, Burr-XII, and Gamma

Usage

AEHMLE(
  init,
  time,
  delta,
  n,
  basehaz,
  z,
  hp.obs,
  method = "Nelder-Mead",
  maxit = 1000,
  log = FALSE
)

Arguments

init

: initial points for optimisation

time

: survival times

delta

: vital indicator (0-alive,1 - dead)

n

: The number of the observations of the data set

basehaz

: baseline hazard structure including baseline (NGLLAEH,GLLAEH,EWAEH,KWAEH,MLLAEH, PGWAEH,GGAEH,MKWAEH,LLAEH,WAEH,GAEH, LNAEH,BXIIAEEH)

z

: design matrix for covariates (p x n), p >= 1

hp.obs

: population hazards (for uncensored individuals)

method

:"nlminb" or a method from "optim"

maxit

:The maximum number of iterations. Defaults to 1000

log

:log scale (TRUE or FALSE)

Value

a list containing the output of the optimisation (OPT) and the information criterion including (AIC, BIC, CAIC, BCAIC, and HQIC).

Format

By default the function calculates the following values:

  • AIC: Akaike Information Criterion;

  • CAIC: Consistent Akaikes Information Criterion;

  • BIC: Bayesian Information Criterion;

  • BCAIC: Bozdogan<U+2019>s Consistent Akaike Information Criterion;

  • HQIC: Hannan-Quinn information criterion;

  • par: maximum likelihood estimates;

  • Value: value of the likelihood function;

  • Convergence: 0 indicates successful completion and 1 indicates that the iteration limit maxit.

Examples

Run this code
# NOT RUN {
data(bmt)
time<-bmt$Time
delta<-bmt$Status
z<-bmt$TRT
AEHMLE(init = c(1.0,0.5,1.0,0.5),time = time,delta = delta,n=nrow(z),
basehaz = "GLLAEH",z = z,hp.obs=0.6,method = "Nelder-Mead",
maxit = 1000)

# }

Run the code above in your browser using DataLab