##run example from Burnham and Anderson (2002, p. 183) with two
##non-nested models
data(pine)
Cand.set <- list( )
Cand.set[[1]] <- lm(y ~ x, data = pine)
Cand.set[[2]] <- lm(y ~ z, data = pine)
##assign model names
Modnames <- c("raw density", "density corrected for resin content")
##compute model selection table
aicctable.out <- aictab(cand.set = Cand.set, modnames = Modnames)
##compute evidence ratio
evidence(aic.table = aicctable.out, model.low = "raw density")
evidence(aic.table = aicctable.out) #gives the same answer
##round to 4 digits after decimal point
print(evidence(aic.table = aicctable.out, model.low = "raw density"),
digits = 4)
##example with bictab
if (FALSE) {
##compute model selection table
bictable.out <- bictab(cand.set = Cand.set, modnames = Modnames)
##compute evidence ratio
evidence(bictable.out, model.low = "raw density")
}
##run models for the Orthodont data set in nlme package
if (FALSE) {
require(nlme)
##set up candidate model list
Cand.models <- list()
Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method = "ML")
##random is ~ age | Subject
Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont,
random = ~ 1, method = "ML")
Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1,
method = "ML")
##create a vector of model names
Modnames <- paste("mod", 1:length(Cand.models), sep = " ")
##compute AICc table
aic.table.1 <- aictab(cand.set = Cand.models, modnames = Modnames,
second.ord = TRUE)
##compute evidence ratio between best model and second-ranked model
evidence(aic.table = aic.table.1)
##compute the same value but from an unsorted model selection table
evidence(aic.table = aictab(cand.set = Cand.models,
modnames = Modnames, second.ord = TRUE, sort = FALSE))
##compute evidence ratio between second-best model and third-ranked
##model
evidence(aic.table = aic.table.1, model.high = "mod1",
model.low = "mod3")
detach(package:nlme)
}
Run the code above in your browser using DataLab