##single-season occupancy model example modified from ?occu
if (FALSE) {
require(unmarked)
##single season
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
## add some fake covariates for illustration
siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)),
sitevar2 = rnorm(numSites(pferUMF)))
## observation covariates are in site-major, observation-minor order
obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) *
obsNum(pferUMF)))
##run model
fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF)
##compute observed chi-square
obs <- mb.chisq(fm1)
obs
##round to 4 digits after decimal point
print(obs, digits.vals = 4)
##compute observed chi-square, assess significance, and estimate c-hat
obs.boot <- mb.gof.test(fm1, nsim = 3)
##note that more bootstrap samples are recommended
##(e.g., 1000, 5000, or 10 000)
obs.boot
print(obs.boot, digits.vals = 4, digits.chisq = 4)
##data with missing values
mat1 <- matrix(c(0, 0, 0), nrow = 120, ncol = 3, byrow = TRUE)
mat2 <- matrix(c(0, 0, 1), nrow = 23, ncol = 3, byrow = TRUE)
mat3 <- matrix(c(1, NA, NA), nrow = 42, ncol = 3, byrow = TRUE)
mat4 <- matrix(c(0, 1, NA), nrow = 33, ncol = 3, byrow = TRUE)
y.mat <- rbind(mat1, mat2, mat3, mat4)
y.sim.data <- unmarkedFrameOccu(y = y.mat)
m1 <- occu(~ 1 ~ 1, data = y.sim.data)
mb.gof.test(m1, nsim = 3)
##note that more bootstrap samples are recommended
##(e.g., 1000, 5000, or 10 000)
##modifying graphical parameters
mb.gof.test(m1, nsim = 3,
cex.axis = 1.2, #axis annotations are 1.2 the default size
cex.lab = 1.2, #axis labels are 1.2 the default size
lwd = 2) #line width is twice the default width
detach(package:unmarked)
}
Run the code above in your browser using DataLab