Learn R Programming

AMORE (version 0.1.1)

error.TAO: Neural network training error criteria.

Description

The error functions calculate the goodness of fit of a neural network according to certain criterium: MSE: Mean Squared Error. Least Mean Squares minimization. LMLS: Least Mean Log Squares minimization. TAO: TAO error minimization. The deltaE functions calculate the corresponding influence functions.

error.MSE(arguments) error.LMLS(arguments) error.TAO(arguments) deltaE.MSE(arguments) deltaE.LMLS(arguments) deltaE.TAO(arguments) arguments{List of arguments to pass to the functions. The first element is the prediction of the neural network. The second element is the target value. A third element is needed for the TAO method containing the value of the S parameter.

This functions return the error and influence function criteria. [object Object],[object Object],[object Object]

Pernia Espinoza, A.V. TAO-robust backpropagation learning algorithm. Neural Networks. In press. Simon Haykin. Neural Networks. A comprehensive foundation. 2nd Edition.

train, train.compare

neural

Arguments

encoding

latin1