# NOT RUN {
# asl<-antsImageRead( getANTsRData("pcasl") )
set.seed(1)
nvox <- 10*10*10*20
dims <- c(10,10,10,20)
asl <- makeImage( dims , rnorm( nvox )+500 )
aslmean <- getAverageOfTimeSeries( asl )
aslmask <- getMask( aslmean )
aslmat<-timeseries2matrix( asl, aslmask )
for ( i in 1:10 ) aslmat[,i*2]<-aslmat[,i*2]*2
asl<-matrix2timeseries( asl, aslmask, aslmat )
tc<-as.factor(rep(c("C","T"),nrow(aslmat)/2))
dv<-computeDVARS(aslmat)
dnz<-aslDenoiseR( aslmat, tc, motionparams=dv, selectionthresh=0.1,
maxnoisepreds=c(1:2), debug=TRUE, polydegree=2, crossvalidationgroups=2 )
# }
# NOT RUN {
# a classic regression approach to estimating perfusion
# not recommended, but shows the basic idea.
# see ?quantifyCBF for a better approach
perfmodel<-lm( aslmat ~ tc + dnz$noiseu )
perfimg<-antsImageClone(aslmask)
perfimg[ aslmask == 1 ]<-bigLMStats( perfmodel )$beta[1,]
m0<-getAverageOfTimeSeries(asl)
ctl<-c(1:(nrow(aslmat)/2))*2
m0[ aslmask==1 ]<-colMeans(aslmat[ctl,])
pcasl.parameters<-list( sequence="pcasl", m0=m0 )
cbf <- quantifyCBF( perfimg, aslmask, pcasl.parameters )
# }
Run the code above in your browser using DataLab