powered by
Compcors the input matrix using SVD and returns the result.
compcor(fmri, ncompcor = 4, variance_extreme = 0.975, mask = NA, useimagemath = FALSE, randomSamples = 1, returnv = FALSE, returnhighvarmat = FALSE, returnhighvarmatinds = FALSE, highvarmatinds = NA)
input fmri image or matrix
n compcor vectors
high variance threshold e.g 0.95 for 95 percent
optional mask for image
use the imagemath implementation instead
take this many random samples to speed things up
return the spatial vectors
bool to return the high variance matrix
bool to return the high variance matrix indices
index list
dataframe of nuisance predictors is output
# NOT RUN { mat <- matrix( rnorm(50000) ,ncol=500) compcorrdf<-compcor( mat ) # }
Run the code above in your browser using DataLab