# NOT RUN {
if (!exists("fn") ) fn<-getANTsRData("pcasl")
# PEDS029_20101110_pcasl_1.nii.gz # high motion subject
asl<-antsImageRead(fn)
# image available at http://files.figshare.com/1701182/PEDS012_20131101.zip
pcasl.bayesian <- aslPerfusion( asl,
dorobust=0., useDenoiser=4, skip=11, useBayesian=1000,
moreaccurate=0, verbose=T, maskThresh=0.5 ) # throw away lots of data
# user might compare to useDenoiser=FALSE
pcasl.parameters <- list( sequence="pcasl", m0=pcasl.bayesian$m0 )
cbf <- quantifyCBF( pcasl.bayesian$perfusion, pcasl.bayesian$mask,
pcasl.parameters )
meancbf <- cbf$kmeancbf
print(mean(meancbf[ pcasl.bayesian$mask==1 ]))
antsImageWrite( meancbf , "temp.nii.gz")
pcasl.processing <- aslPerfusion( asl, moreaccurate=0,
dorobust=0.95, useDenoiser=NA, skip=5, useBayesian=0 )
# user might compare to useDenoiser=FALSE
pcasl.parameters <- list( sequence="pcasl", m0=pcasl.processing$m0 )
cbf <- quantifyCBF( pcasl.processing$perfusion, pcasl.processing$mask, pcasl.parameters )
meancbf <- cbf$kmeancbf
print(mean(meancbf[ pcasl.processing$mask==1 ]))
antsImageWrite( meancbf , "temp2.nii.gz" )
plot( meancbf, slices="1x50x1" )
# }
Run the code above in your browser using DataLab