# NOT RUN {
mat<-replicate(100, rnorm(20))
mydecom<-sparseDecomboot( mat, nboot=5, nsamp=0.9, nvecs=2 )
# }
# NOT RUN {
# for prediction
if ( usePkg("randomForest") & usePkg("spls") ) {
data(lymphoma)
training<-sample( rep(c(TRUE,FALSE),31) )
sp<-0.001 ; myz<-0 ; nv<-5
ldd<-sparseDecomboot( lymphoma$x[training,], nvecs=nv ,
sparseness=( sp ), mycoption=1, z=myz , nsamp=0.9, nboot=50 ) # NMF style
outmat<-as.matrix(ldd$eigenanatomyimages )
# outmat<-t(ldd$cca1outAuto)
traindf<-data.frame( lclass=as.factor(lymphoma$y[ training ]),
eig = lymphoma$x[training,] %*% outmat )
testdf<-data.frame( lclass=as.factor(lymphoma$y[ !training ]),
eig = lymphoma$x[!training,] %*% outmat )
myrf<-randomForest( lclass ~ . , data=traindf )
predlymp<-predict(myrf, newdata=testdf)
print(paste('N-errors:',sum(abs( testdf$lclass != predlymp ) ),
'non-zero ',sum(abs( outmat ) > 0 ) ) )
for ( i in 1:nv )
print(paste(' non-zero ',i,' is: ',sum(abs( outmat[,i] ) > 0 ) ) )
}
# }
# NOT RUN {
# end dontrun
# }
Run the code above in your browser using DataLab