powered by
SubgradientL1Regression solves y approx x beta
subgradientL1Regression(y, x, s = 0.01, percentvals = 0.1, nits = 100, betas = NA, sparval = NA)
outcome variable
predictor matrix
gradient descent parameter
percent of values to use each iteration
number of iterations
initial guess at solution
sparseness
output has a list of summary items
# NOT RUN { mat<-replicate(1000, rnorm(200)) y<-rnorm(200) wmat<-subgradientL1Regression( y, mat, percentvals=0.05 ) print( wmat$resultcorr ) # }
Run the code above in your browser using DataLab