Learn R Programming

ANTsR (version 0.3.3)

antsBOLDNetworkAnalysis: a basic framework for network analysis that produces graph metrics

Description

An implementation of a network analysis framework for BOLD data. We expect that you mapped a label image ( e.g. aal ) to the 3D BOLD space. We build a network and graph metrics from this image and these labels based on the user-defined graph density level.

Usage

antsBOLDNetworkAnalysis(bold = NA, mask = NA, labels = NA, motion, gdens = 0.2, threshLo = 1, threshHi = 90, freqLo = 0.01, freqHi = 0.1, winsortrim = 0.02, throwaway)

Arguments

bold
input 4D image
mask
antsImage defines areas of interest
labels
antsImage defines regions of interest ie a parcellation
motion
motion parameters - if missing, will estimate from data
gdens
graph density applied to network covariance matrix
threshLo
lower threshold for the label image
threshHi
upper threshold for the label image
freqLo
lower frequency cutoff
freqHi
upper frequency cutoff
winsortrim
winsorize the bold signal by these values eg 0.02
throwaway
this number of initial bold volumes

Value

list of outputs

Examples

Run this code
# none yet - this is not very well tested with recent ANTsR
## Not run: 
# myimg <- antsImageRead(getANTsRData( "ch2" ), 3)
# mylab <- antsImageRead(getANTsRData( "ch2a" ), 3)
# boldfn <- getANTsRData( "pcasl" )
# bold <- antsImageRead( boldfn , 4 )
# avgbold <- getAverageOfTimeSeries( bold )
# breg <- antsRegistration( avgbold, myimg, typeofTransform = c("AffineFast") )
# warpedParcellation <- antsApplyTransforms( avgbold, mylab,
#     transformlist=breg$fwdtransforms, interpolator="NearestNeighbor" )
# mask <- getMask( avgbold )
# result <- antsBOLDNetworkAnalysis( bold=bold, mask=mask, warpedParcellation )
# ## End(Not run)

Run the code above in your browser using DataLab