Learn R Programming

ANTsR (version 0.3.3)

bayesianCBF: Uses probabilistic segmentation to constrain pcasl-based cbf computation.

Description

Employs a robust regression approach to learn the relationship between a sample image and a list of images that are mapped to the same space as the sample image.

Usage

bayesianCBF(pcasl, segmentation, tissuelist, myPriorStrength = 30, useDataDrivenMask = 3, denoisingComponents = 1:8, robustnessvalue = 0.95, localweights = F, priorBetas = NA)

Arguments

pcasl
img antsImage for cbf
segmentation
image, should cover the brain.
tissuelist
a list containing antsImages eg list(prob1,...,probN)
myPriorStrength
- e.g 30
useDataDrivenMask
- morphology parameters e.g. 3
denoisingComponents
- data-driven denoising parameters
robustnessvalue
- value (e.g. 0.95) that throws away time points
localweights
Use estimate of voxel-wise reliability to inform prior weight?
priorBetas
prior betas for each tissue and predictor

Value

estimated cbf image

Examples

Run this code

## Not run: 
# set.seed(123)
# # see fMRIANTs github repository for data and I/O suggestions
# ## End(Not run)

Run the code above in your browser using DataLab