Learn R Programming

ANTsR (version 0.3.3)

combineNuisancePredictors: Combine and reduce dimensionality of nuisance predictors.

Description

Combine and select nuisance predictors to maximize correlation between inmat and target.

Usage

combineNuisancePredictors(inmat, target, globalpredictors=NA, maxpreds=4, localpredictors=NA, method="cv", k=5, covariates=NA, ordered=F)

Arguments

inmat
Input predictor matrix.
target
Target outcome matrix.
globalpredictors
Global predictors of size nrow(inmat) by n, where n is the number of global predictors.
maxpreds
Maximum number of predictors to output.
localpredictors
Local predictor array of size nrow(inmat) by ncol(inmat) by m, where m is the number of local predictors.
method
Method of selecting noisy voxels. One of 'svd' or 'cv'. See Details.
k
Number of cross-validation folds.
covariates
Covariates to be considered when assessing prediction of target.
ordered
Can the predictors be assumed to be ordered from most important to least important, as in output from PCA? Computation is much faster if so.

Value

Array of size nrow(aslmat) by npreds, containing a timeseries of all the nuisance predictors. If localpredictors is not NA, array is of size nrow(aslmat) by ncol(aslmat) by npreds.

Examples

Run this code
set.seed(120)
simimg<-makeImage( c(10,10,10,20), rnorm(1000*20) )
moco <- antsMotionCalculation( simimg , moreaccurate=0)
# for real data use below
# moco <- antsMotionCalculation(getANTsRData("pcasl"))
aslmat <- timeseries2matrix(moco$moco_img, moco$moco_mask)
tc <- rep(c(0.5, -0.5), length.out=nrow(aslmat))
noise <- getASLNoisePredictors(aslmat, tc, 0.5 )
noise.sub <- combineNuisancePredictors(aslmat, tc, noise, 2)

Run the code above in your browser using DataLab