Learn R Programming

ANTsR (version 0.3.3)

cvEigenanatomy: Cross-validation method for eigenanatomy decompositions.

Description

Perform cross-validation on an image set using eigencomponents to predict an outcome variable.

Usage

cvEigenanatomy(demog, images, outcome, ratio = 10, mask = NA, sparseness = 0.01, nvecs = 50, its = 5, cthresh = 250, ...)

Arguments

demog
Demographics information that includes outcome and (optional) covariates.
images
n by p input image matrix, where n is the number of subjects and p is the number of voxels.
outcome
Name of outcome variable. Must be present in demog.
ratio
If greater than 1, number of folds for cross-validation. If less than 1, one testing-training step will be performed, using ratio of the data for training and the rest for testing.
mask
Mask image of type antsImage.
sparseness
Desired level of sparsity in decomposition.
nvecs
Number of eigenvectors to use in decomposition.
its
Number of iterations for decomposition.
cthresh
Cluster threshold for decomposition.
...
Additional options passed to regressProjections.

Value

A result, or (if ratio > 1) list of results, from regressProjection.

Examples

Run this code

## Not run: 
# # generate simulated outcome
# nsubjects <- 100
# x1 <- seq(1, 10, length.out=nsubjects) + rnorm(nsubjects, sd=2)
# x2 <- seq(25, 15, length.out=nsubjects) + rnorm(nsubjects, sd=2)
# outcome <- 3 * x1 + 4 * x2 + rnorm(nsubjects, sd=1)
# # generate simulated images with outcome predicted 
# # by sparse subset of voxels
# voxel.1 <- 3 * x1 + rnorm(nsubjects, sd=2)
# voxel.2 <- rnorm(nsubjects, sd=2)
# voxel.3 <- 2 * x2 + rnorm(nsubjects, sd=2)
# voxel.4 <- rnorm(nsubjects, sd=3)
# input   <- cbind(voxel.1, voxel.2, voxel.3, voxel.4)
# mask    <- as.antsImage(matrix(c(1,1,1,1), nrow=2))
# # generate sample demographics that do not explain outcome
# age <- runif(nsubjects, 50, 75)
# demog <- data.frame(outcome=outcome, age=age)
# result <- cvEigenanatomy(demog, input, 'outcome', ratio=5, mask, 
#             sparseness=0.25, nvecs=4) 
# ## End(Not run)

Run the code above in your browser using DataLab