mat <- matrix(rnorm(2000),ncol=50)
nv <- eanatSelect( mat, selectorScale = 1.2 )
esol <- eanatDef( mat, nvecs=nv )
es2 <- sparseDecom( mat, nvecs = nv )
print( paste( "selected", nrow(esol),'pseudo-eigenvectors') )
print( mean( abs( cor( mat %*% t(esol)) ) ) ) # what we use to select nvecs
## Not run:
# networkPriors = getANTsRData("fmrinetworks")
# ilist = networkPriors$images
# mni = antsImageRead( getANTsRData("mni") )
# mnireg = antsRegistration( meanbold*mask, mni, typeofTransform = 'Affine')
# for ( i in 1:length(ilist) )
# ilist[[i]] = antsApplyTransforms( meanbold,ilist[[i]],mnireg$fwdtransform )
# pr = imageListToMatrix( ilist, cortMask )
# esol <- eanatDef( boldMat,
# nvecs = length(ilist), cortMask, verbose=FALSE,
# cthresh = 25, smoother = 0, positivity = TRUE, its=10, priors=pr,
# priorWeight=0.15, eps=0.1 )
# ## End(Not run)
Run the code above in your browser using DataLab