Learn R Programming

ANTsR (version 0.3.3)

geoSeg: brain segmentation based on geometric priors

Description

uses topological constraints to enhance accuracy of brain segmentation

Usage

geoSeg(img, brainmask, priors, seginit, vesselopt = "none", vesselk = 2, gradStep = 1.25, mrfval = 0.1, atroposits = 10, jacw = NA, beta = 0.9)

Arguments

img
input image or list of images (multiple features) where 1st image would typically be the primary constrast
brainmask
binary image
priors
spatial priors, assume first is csf, second is gm, third is wm
seginit
a previously computed segmentation which should have the structure of atropos or kmeansSegmentation output
vesselopt
one of bright, dark or none
vesselk
integer for kmeans vessel-based processing
gradStep
scalar for registration
mrfval
e.g. 0.05 or 0.1
atroposits
e.g. 5 iterations
jacw
precomputed diffeo jacobian
beta
for sigma transformation ( thksig output variable )

Value

list of segmentation result images

Examples

Run this code

## Not run: 
# img = antsImageRead( getANTsRData("simple") ,2)
# img = n3BiasFieldCorrection( img , 4 )
# img = n3BiasFieldCorrection( img , 2 )
# bmk = getMask( img )
# segs <- kmeansSegmentation( img, 3, bmk )
# priors = segs$probabilityimages
# seg = geoSeg( img, bmk, priors )
# ## End(Not run)

Run the code above in your browser using DataLab