Learn R Programming

ANTsR (version 0.3.3)

joinEigenanatomy: Simple joinEigenanatomy function.

Description

joinEigenanatomy joins the input matrix using a community membership approach.

Usage

joinEigenanatomy(datamatrix, mask = NA, listEanatImages, graphdensity = 0.65, joinMethod = "walktrap", verbose = F)

Arguments

datamatrix
input matrix before decomposition
mask
mask used to create datamatrix
listEanatImages
list containing pointers to eanat images
graphdensity
target graph density or densities to search over
joinMethod
see igraph's community detection
verbose
bool

Value

return(list(fusedlist = newelist, fusedproj = myproj, memberships = communitymembership , graph=gg, bestdensity=graphdensity ))

Examples

Run this code

# if you dont have images
mat<-replicate(100, rnorm(20))
mydecom<-sparseDecom( mat )
kk<-joinEigenanatomy( mat, mask=NA, mydecom$eigenanatomyimages , 0.1 )
# or select optimal parameter from a list
kk<-joinEigenanatomy( mat, mask=NA, mydecom$eigenanatomyimages , c(1:10)/50 )
# something similar may be done with images
mask<-as.antsImage( t(as.matrix(array(rep(1,ncol(mat)),ncol(mat)))) )
mydecom<-sparseDecom( mat, inmask=mask )
eanatimages = matrixToImages( mydecom$eigenanatomyimages, mask )
kki<-joinEigenanatomy( mat, mask=mask, eanatimages , 0.1 )
if ( usePkg("igraph") ) {
  mydecomf<-sparseDecom( mat, inmask=mask, initializationList=kki$fusedlist ,
    sparseness=0, nvecs=length(kki$fusedlist) )
 }

Run the code above in your browser using DataLab