## Not run:
# mat<-replicate(100, rnorm(20))
# mydecom<-networkEiganat( mat, nvecs=5 )
# ch1<-usePkg('randomForest')
# ch2<-usePkg('BGLR')
# if ( ch1 & ch2 ) {
# data(mice)
# snps<-quantifySNPs( mice.X )
# numericalpheno<-as.matrix( mice.pheno[,c(4,5,13,15) ] )
# numericalpheno<-residuals( lm( numericalpheno ~
# as.factor(mice.pheno$Litter) ) )
# phind<-3
# nfolds<-6
# train<-sample( rep( c(1:nfolds), 1800/nfolds ) )
# train<-( train < 4 )
# lowr<-lowrankRowMatrix(as.matrix( snps[train,] ),900)
# snpdS<-sparseDecom( lowr , nvecs=2 , sparseness=( -0.001), its=3 )
# snpdF<-sparseDecom( lowrankRowMatrix(as.matrix( snps[train,] ),100),
# nvecs=2 , sparseness=( -0.001), its=3 )
# projmat<-as.matrix( snpdS$eig )
# projmat<-as.matrix( snpdF$eig )
# snpdFast<-networkEiganat( as.matrix( snps[train,] ), nvecs=2 ,
# sparseness=c( 1, -0.001 ) , downsample=45, verbose=T, its=3,
# gradparam=10 )
# snpdSlow<-networkEiganat( as.matrix( snps[train,] ), nvecs=2 ,
# sparseness=c( 1, -0.001 ) , downsample=0, verbose=T,
# its=3, gradparam=10 )
# snpd<-snpdSlow
# snpd<-snpdFast
# projmat<-as.matrix( snpd$v )
# snpdF<-sparseDecom( lowrankRowMatrix(as.matrix( snps[train,] ),10) ,
# nvecs=2 , sparseness=( -0.001), its=3 )
# projmat<-as.matrix( snpdS$eig )
# snpse<-as.matrix( snps[train, ] ) %*% projmat
# traindf<-data.frame( bmi=numericalpheno[train,phind] , snpse=snpse)
# snpse<-as.matrix( snps[!train, ] ) %*% projmat
# testdf <-data.frame( bmi=numericalpheno[!train,phind] , snpse=snpse )
# myrf<-glm( bmi ~ . , data=traindf )
# preddf<-predict(myrf, newdata=testdf )
# cor.test(preddf, testdf$bmi )
# if ( usePkg('visreg') ) {
# mydf<-data.frame( PredictedBMIfromSNPs=preddf, RealBMI=testdf$bmi )
# mymdl<-lm( PredictedBMIfromSNPs ~ RealBMI, data=mydf)
# visreg::visreg(mymdl) }
# ###########
# # vs glmnet #
# ###########
# haveglm<-usePkg('glmnet')
# if ( haveglm ) {
# kk<-glmnet(y=numericalpheno[train,phind],x=snps[train,] )
# ff<-predict(kk,newx=snps[!train,])
# cor.test(ff[,25],numericalpheno[!train,phind])
# mydf<-data.frame( PredictedBMIfromSNPs=ff[,25], RealBMI=testdf$bmi )
# mymdl<-lm( PredictedBMIfromSNPs ~ RealBMI, data=mydf)
# } # glmnet check
# } # ch1 and ch2
# ###########
# ## End(Not run)
Run the code above in your browser using DataLab