Learn R Programming

ANTsR (version 0.3.3)

networkEiganat: Convenience wrapper for eigenanatomy decomposition.

Description

Decomposes a matrix into sparse eigenevectors to maximize explained variance.

Usage

networkEiganat(Xin, sparseness = c(0.1, 0.1), nvecs = 5, its = 5, gradparam = 1, mask = NA, v, prior, pgradparam = 0.1, clustval = 0, downsample = 0, doscale = T, domin = T, verbose = F, dowhite = 0, timeme = T, addb = T, useregression = T)

Arguments

Xin
n by p input images , subjects or time points by row , spatial variable lies along columns
sparseness
sparseness pair c( 0.1 , 0.1 )
nvecs
number of vectors
its
number of iterations
gradparam
gradient descent parameter for data
mask
optional antsImage mask
v
the spatial solultion
prior
the prior
pgradparam
gradient descent parameter for prior term
clustval
integer greater than or equal to zero
downsample
bool
doscale
bool
domin
bool
verbose
bool
dowhite
bool
timeme
bool
addb
bool
useregression
bool

Value

outputs a decomposition of a population or time series matrix

Examples

Run this code

## Not run: 
# mat<-replicate(100, rnorm(20))
# mydecom<-networkEiganat( mat, nvecs=5 )
# ch1<-usePkg('randomForest')
# ch2<-usePkg('BGLR')
# if ( ch1 & ch2 ) {
# data(mice)
# snps<-quantifySNPs( mice.X )
# numericalpheno<-as.matrix( mice.pheno[,c(4,5,13,15) ] )
# numericalpheno<-residuals( lm( numericalpheno ~
#    as.factor(mice.pheno$Litter) ) )
# phind<-3
# nfolds<-6
# train<-sample( rep( c(1:nfolds), 1800/nfolds ) )
# train<-( train < 4 )
# lowr<-lowrankRowMatrix(as.matrix( snps[train,] ),900)
# snpdS<-sparseDecom( lowr , nvecs=2 , sparseness=( -0.001), its=3  )
# snpdF<-sparseDecom( lowrankRowMatrix(as.matrix( snps[train,] ),100),
#   nvecs=2 , sparseness=( -0.001), its=3 )
# projmat<-as.matrix( snpdS$eig )
# projmat<-as.matrix( snpdF$eig )
# snpdFast<-networkEiganat( as.matrix( snps[train,] ), nvecs=2 ,
#   sparseness=c( 1, -0.001 ) , downsample=45, verbose=T, its=3,
#   gradparam=10 )
# snpdSlow<-networkEiganat( as.matrix( snps[train,] ), nvecs=2 ,
#   sparseness=c( 1, -0.001 ) , downsample=0, verbose=T,
#   its=3, gradparam=10 )
# snpd<-snpdSlow
# snpd<-snpdFast
# projmat<-as.matrix( snpd$v )
# snpdF<-sparseDecom( lowrankRowMatrix(as.matrix( snps[train,] ),10) ,
#   nvecs=2 , sparseness=( -0.001), its=3  )
# projmat<-as.matrix( snpdS$eig )
# snpse<-as.matrix( snps[train, ]  ) %*% projmat
# traindf<-data.frame( bmi=numericalpheno[train,phind] , snpse=snpse)
# snpse<-as.matrix( snps[!train, ]  ) %*% projmat
# testdf <-data.frame( bmi=numericalpheno[!train,phind] , snpse=snpse )
# myrf<-glm( bmi ~ . , data=traindf )
# preddf<-predict(myrf, newdata=testdf )
# cor.test(preddf, testdf$bmi )
# if ( usePkg('visreg') ) {
# mydf<-data.frame( PredictedBMIfromSNPs=preddf, RealBMI=testdf$bmi )
# mymdl<-lm( PredictedBMIfromSNPs ~ RealBMI, data=mydf)
# visreg::visreg(mymdl) }
# ###########
# # vs glmnet #
# ###########
# haveglm<-usePkg('glmnet')
# if ( haveglm ) {
# kk<-glmnet(y=numericalpheno[train,phind],x=snps[train,] )
# ff<-predict(kk,newx=snps[!train,])
# cor.test(ff[,25],numericalpheno[!train,phind])
# mydf<-data.frame( PredictedBMIfromSNPs=ff[,25], RealBMI=testdf$bmi )
# mymdl<-lm( PredictedBMIfromSNPs ~ RealBMI, data=mydf)
# } # glmnet check
# } # ch1 and ch2
# ###########
# ## End(Not run)

Run the code above in your browser using DataLab