Learn R Programming

ANTsR (version 0.3.3)

preprocessfMRI: Preprocess BOLD fMRI image data.

Description

Preprocess fMRI data by performing compcor/motion correction, nuisance regression, band-pass filtering, and spatial smoothing.

Usage

preprocessfMRI(boldImage, maskImage = NA, maskingMeanRatioThreshold = 0.75, initialNuisanceVariables = NA, numberOfCompCorComponents = 6, doMotionCorrection = TRUE, useMotionCorrectedImage = FALSE, motionCorrectionAccuracyLevel = 1, meanBoldFixedImageForMotionCorrection = NA, frequencyLowThreshold = NA, frequencyHighThreshold = NA, spatialSmoothingType = "none", spatialSmoothingParameters = 0, residualizeMatrix = TRUE)

Arguments

boldImage
4-D ANTs image fMRI data.
maskImage
3-D ANTs image defining the region of interest.
maskingMeanRatioThreshold
If mask image is not specified, a mask image is created using the specified threshold which is in terms of the mean of the average image ie 0.8 means threshold at 0.8 of the mean.
initialNuisanceVariables
Optional initial nuisance variables.
numberOfCompCorComponents
Numer of CompCor nuisance components.
doMotionCorrection
Boolean indicating whether motion correction should be performed and used in nuisance regression.
useMotionCorrectedImage
Boolean indicating whether or not the motion corrected image should be used in the rest of the pipeline. This is off by default to avoid additional interpolation.
motionCorrectionAccuracyLevel
Accuracy for the motion correcting registration: 0 = fast/debug parameters, 1 = intrasession parameters, or 2 = intersession/intersubject parameters.
meanBoldFixedImageForMotionCorrection
Optional target fixed image for motion correction.
frequencyLowThreshold
Lower threshold for bandpass filtering.
frequencyHighThreshold
Upper threshold for bandpass filtering.
spatialSmoothingType
Either none, gaussian (isotropic) or perona-malik (anisotropic) smoothing.
spatialSmoothingParameters
For gaussian smoothing, this is a single scalar designating the smoothing sigma (in mm). For perona-malik, a vector needs to be specified with the conductance parameter and the number of iterations, e.g. c(0.25, 5).
residualizeMatrix
boolean

Value

List of:
  • cleanBOLDImage: Cleaned BOLD image.
  • maskImage: mask image.
  • DVARS: Framewise change in BOLD signal, as in Powers et al.
  • DVARSPostCleaning: DVARS after cleaning image.
  • FD: Framewise displacement.
  • globalSignal: Global signal.
  • nuisanceVariables: Nuisance variables used in denoising.

References

Power et al. 2012, "Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion." NeuroImage 59, 2142-2154.

Examples

Run this code
set.seed(123)
n=16
nvox <- n*n*n*12
dims <- c(n,n,n,12)
boldImage <- makeImage(dims, rnorm(nvox) + 500) %>% iMath("PadImage", 2)
# for real data: boldImage <- antsImageRead(getANTsRData('pcasl'))
cleanfMRI <- preprocessfMRI(boldImage)

Run the code above in your browser using DataLab