## Not run:
# mnit1 <- antsImageRead(getANTsRData('mni'))
# mask <- getMask(mnit1)
# ilist <- list()
# for (i in 1:10) {
# ilist <- lappend(ilist, antsImageClone(mnit1) * rnorm(1))
# }
# response <- rnorm(10)
# imat <- imageListToMatrix(ilist, mask)
# residuals <- matrix(nrow = nrow(imat), ncol = ncol(imat))
# tvals <- matrix(nrow = nrow(imat), ncol = ncol(imat))
# for (i in 1:ncol(imat)) {
# fit <- lm(response ~ imat[, i])
# tvals <- coefficients(fit)[2]
# residuals[, i] <- residuals(fit)
# }
# myfwhm <- estSmooth(residuals, mask, fit$df.residual)
# res <- resels(mask, myfwhm$fwhm)
# timg <- makeImage(mask, tvals)
#
# # threshold to create peak values with p-value of .05 (default)
# results1 <- rftResults(timg, res, myfwhm$fwhm, df, fieldType = "T",
# threshType = "pRFT", pval = .05)
#
# # threshold to create clusters with p-value of .05
# results2 <- rftResults(timg, res, myfwhm$fwhm, df, fieldType = "T",
# threshType = "cRFT", pval = .05)
#
# # initial threshold at p-value of .001 followed by peak FDR threshTypeold at
# # p-value of .05
# results3 <- rftResults(timg, res, myfwhm$fwhm, df, fieldType = "T",
# threshType = "pFDR", pval = .05, pp=.01)
#
# # initial threshold at p-value of .001 followed by cluster FDR threshold at
# # p-value of .05
# results4 <- rftResults(timg, res, myfwhm$fwhm, df, fieldType = "T",
# threshType = "cFDR", pval = .05, pp = .01)
#
# # correcting for non-isotropic
# results5 <- rftResults(timg, res, myfwhm$fwhm, df, fieldType = "T",
# fwhm$RPVImg)
#
# ## End(Not run)
Run the code above in your browser using DataLab