Learn R Programming

ANTsR (version 0.3.3)

sparseDistanceMatrixXY: Create sparse distance, covariance or correlation matrix from x, y

Description

Exploit k-nearest neighbor algorithms to estimate a sparse matrix measuring the distance, correlation or covariance between two matched datasets. Critical to the validity of this function is the basic mathematical relationships between euclidean distance and correlation and between correlation and covariance. For applications of such matrices, one may see relevant publications by Mauro Maggioni and other authors.

Usage

sparseDistanceMatrixXY(x, y, k = 3, r = Inf, sigma = NA, kmetric = c("euclidean", "correlation", "covariance", "gaussian"), eps = 1e-06, mypkg = "nabor")

Arguments

x
input matrix, should be n (samples) by p (measurements)
y
input matrix second view, should be n (samples) by q (measurements)
k
number of neighbors
r
radius of epsilon-ball
sigma
parameter for kernel PCA.
kmetric
similarity or distance metric determining k nearest neighbors
eps
epsilon error for rapid knn
mypkg
set either nabor, RANN, rflann or naborpar

Value

matrix sparse p by q matrix is output with p by k nonzero entries

References

http://www.math.jhu.edu/~mauro/multiscaledatageometry.html

Examples

Run this code
## Not run: 
# mat = matrix( rnorm(60), nrow=6 )
# mat2 = matrix( rnorm(120), nrow=6 )
# smat = sparseDistanceMatrixXY( mat, mat2, 3 )
# smat2 = sparseDistanceMatrixXY( mat2, mat, 3 )
# ## End(Not run)

Run the code above in your browser using DataLab