# NOT RUN {
mat<-t(replicate(3, rnorm(100)) )
initdf<-initializeEigenanatomy( mat ) # produces a mask
dmat<-replicate(100, rnorm(20)) # data matrix
svdv = t( svd( mat, nu=0, nv=10 )$v )
ilist = matrixToImages( svdv, initdf$mask )
eseg = eigSeg( initdf$mask, ilist, TRUE )
eanat<-sparseDecom( dmat, inmask=initdf$mask,
sparseness=0, smooth=0,
initializationList=ilist, cthresh=0,
nvecs=length(ilist) )
initdf2<-initializeEigenanatomy( mat, nreps=2 )
eanat<-sparseDecom( dmat, inmask=initdf$mask,
sparseness=0, smooth=0, z=-0.5,
initializationList=initdf2$initlist, cthresh=0,
nvecs=length(initdf2$initlist) )
# now a regression
eanatMatrix<-eanat$eigenanatomyimages
# 'averages' loosely speaking anyway
myEigenanatomyRegionAverages<-dmat %*% t( eanatMatrix )
dependentvariable<-rnorm( nrow(dmat) )
summary(lm( dependentvariable ~ myEigenanatomyRegionAverages ))
nvox<-1000
dmat<-replicate(nvox, rnorm(20))
dmat2<-replicate(30, rnorm(20))
mat<-t(replicate(3, rnorm(nvox)) )
initdf<-initializeEigenanatomy( mat )
eanat<-sparseDecom2( list(dmat,dmat2), inmask=c(initdf$mask,NA),
sparseness=c( -0.1, -0.2 ), smooth=0,
initializationList=initdf$initlist, cthresh=c(0,0),
nvecs=length(initdf$initlist), priorWeight = 0.1 )
# }
Run the code above in your browser using DataLab