# NOT RUN {
mat<-t(replicate(3, rnorm(100)) )
for ( i in 1:nrow(mat) ) mat[i, abs(mat[i,]) < 1 ]<-0
initdf<-initializeEigenanatomy( mat )
dmat<-replicate(100, rnorm(20))
eanat<-sparseDecom( dmat, inmask=initdf$mask,
sparseness=0, smooth=0,
initializationList=initdf$initlist, cthresh=0,
nvecs=length(initdf$initlist) )
initdf2<-initializeEigenanatomy( mat, nreps=2 )
eanat<-sparseDecom( dmat, inmask=initdf$mask,
sparseness=0, smooth=0, z=-0.5,
initializationList=initdf2$initlist, cthresh=0,
nvecs=length(initdf2$initlist) )
# now a regression
eanatMatrix<-imageListToMatrix( eanat$eigenanatomyimages, initdf$mask )
# "averages" loosely speaking anyway
myEigenanatomyRegionAverages<-dmat
# }
# NOT RUN {
<!-- %*% t( eanatMatrix ) -->
# }
# NOT RUN {
dependentvariable<-rnorm( nrow(dmat) )
summary(lm( dependentvariable ~ myEigenanatomyRegionAverages ))
nvox<-1000
dmat<-replicate(nvox, rnorm(20))
dmat2<-replicate(30, rnorm(20))
mat<-t(replicate(3, rnorm(nvox)) )
for ( i in 1:nrow(mat) ) {
mat[i,]<-eanatsparsify( mat[i,] , 0.5^(i+1) )
print(paste(sum(mat[i,]>0)/ncol(mat), 0.5^(i+1) ))
}
initdf<-initializeEigenanatomy( mat )
eanat<-sparseDecom2( list(dmat,dmat2), inmask=c(initdf$mask,NA),
sparseness=c( -0.1, -0.2 ), smooth=0,
initializationList=initdf$initlist, cthresh=c(0,0),
nvecs=length(initdf$initlist), priorWeight = 0.1 )
# }
Run the code above in your browser using DataLab