# NOT RUN {
mask<-makeImage( c(10,10), 0 )
mask[ 3:6, 3:6 ]<-1
mask[ 5, 5:6]<-2
ilist<-list()
lablist<-list()
inds<-1:50
scl<-0.33 # a noise parameter
for ( predtype in c("label","scalar") )
{
for ( i in inds ) {
img<-antsImageClone(mask)
imgb<-antsImageClone(mask)
limg<-antsImageClone(mask)
if ( predtype == "label") { # 4 class prediction
img[ 3:6, 3:6 ]<-rnorm(16)*scl+(i %% 4)+scl*mean(rnorm(1))
imgb[ 3:6, 3:6 ]<-rnorm(16)*scl+(i %% 4)+scl*mean(rnorm(1))
limg[ 3:6, 3:6 ]<-(i %% 4)+1 # the label image is constant
}
if ( predtype == "scalar") {
img[ 3:6, 3:6 ]<-rnorm(16,1)*scl*(i)+scl*mean(rnorm(1))
imgb[ 3:6, 3:6 ]<-rnorm(16,1)*scl*(i)+scl*mean(rnorm(1))
limg<-i^2.0 # a real outcome
}
ilist[[i]]<-list(img,imgb) # two features
lablist[[i]]<-limg
}
rad<-rep( 1, 2 )
mr <- c(1.5,1)
rfm<-mrvnrfs( lablist , ilist, mask, rad=rad, multiResSchedule=mr,
asFactors = ( predtype == "label" ) )
rfmresult<-mrvnrfs.predict( rfm$rflist,
ilist, mask, rad=rad, asFactors=( predtype == "label" ),
multiResSchedule=mr )
if ( predtype == "scalar" )
print( cor( unlist(lablist) , rfmresult$seg ) )
} # end predtype loop
# }
Run the code above in your browser using DataLab