# NOT RUN {
mat<-replicate(100, rnorm(20))
mat2<-replicate(100, rnorm(20))
mydecom<-sparseDecom2( inmatrix=list(mat,mat2),
sparseness=c(0.1,0.3) , nvecs=3, its=3, perms=0)
wt<-0.666
mat3<-mat*wt+mat2*(1-wt)
mydecom<-sparseDecom2( inmatrix=list(mat,mat3),
sparseness=c(0.2,0.2), nvecs=5, its=10, perms=5 )
# }
# NOT RUN {
# a masked example
im<-antsImageRead( getANTsRData("r64"))
dd<- im > 250
mask<-antsImageClone( im )
mask[ !dd ]<-0
mask[ dd ]<-1
mat1<-matrix( rnorm(sum(dd)*10) , nrow=10 )
mat2<-matrix( rnorm(sum(dd)*10) , nrow=10 )
initlist<-list()
for ( nvecs in 1:2 ) {
init1<-antsImageClone( mask )
init1[dd]<-rnorm(sum(dd))
initlist<-lappend( initlist, init1 )
}
ff<-sparseDecom2( inmatrix=list(mat1,mat2), inmask=list(mask,mask),
sparseness=c(0.1,0.1) ,nvecs=length(initlist) , smooth=1,
cthresh=c(0,0), initializationList = initlist ,ell1 = 11 )
### now SNPs ###
rf<-usePkg('randomForest')
bg<-usePkg('BGLR')
if ( bg & rf ) {
data(mice)
snps<-mice.X
numericalpheno<-as.matrix( mice.pheno[,c(4,5,13,15) ] )
numericalpheno<-residuals( lm( numericalpheno ~
as.factor(mice.pheno$Litter) ) )
nfolds<-6
train<-sample( rep( c(1:nfolds), 1800/nfolds ) )
train<-( train < 4 )
snpd<-sparseDecom2( inmatrix=list( ( as.matrix(snps[train,]) ),
numericalpheno[train,] ), nvecs=20, sparseness=c( 0.001, -0.5 ),
its=3, ell1=0.1 , z=-1 )
for ( j in 3:3) {
traindf<-data.frame( bmi=numericalpheno[ train,j] ,
snpse=as.matrix( snps[train, ] ) %*% as.matrix( snpd$eig1 ) )
testdf <-data.frame( bmi=numericalpheno[!train,j] ,
snpse=as.matrix( snps[!train,] ) %*% as.matrix( snpd$eig1 ) )
myrf<-randomForest( bmi ~ . , data=traindf )
preddf<-predict(myrf, newdata=testdf )
print( cor.test(preddf, testdf$bmi ) )
plot( preddf, testdf$bmi )
}
} # check bg and rf
# }
Run the code above in your browser using DataLab