# NOT RUN {
# Merval data example:
data(merval)
id.data <- rev(which(merval[,1]>'2015-12-31' & merval[,1]<'2020-10-01') )
y <- itsframe(date=merval[id.data,1], a=merval[id.data,2], b=merval[id.data,3]);
isst_output <- isst(y ,l = 'automatic', m = 'automatic')
print(isst_output)
# Estimated trendlines
plot(isst_output)
## Scree-plot
plot(isst_output, options = list(type = "screeplot", ncomp = 1:10),
type = "b", pch = 20, lwd = 2)
# Elementary reconstructed components
plot(isst_output, options=list(type='components',ncomp=1:3),
xlab='Time')
# cpgram's ('a=low' and 'b=high')
plot(isst_output, options = list(type='cpgram'))
# Setting m = 'automatic' (default option) to obtain cpgrams inside the bandwiths.
##################################
### Forecasting with isst ###
##################################
pred <- predict(isst_output, p = 5)
head(pred$forecast,3) # Forecasted interval data.
attributes(pred)
pred$coefficients[1:5] # linear recurrence parameters.
# End
# }
Run the code above in your browser using DataLab