Learn R Programming

AUC (version 0.3.2)

sensitivity: Compute the sensitivity curve.

Description

This function computes the sensitivity curve required for the auc function and the plot function.

Usage

sensitivity(predictions, labels, perc.rank = TRUE)

Arguments

predictions

A numeric vector of classification probabilities (confidences, scores) of the positive event.

labels

A factor of observed class labels (responses) with the only allowed values {0,1}.

perc.rank

A logical. If TRUE (default) the percentile rank of the predictions is used.

Value

A list containing the following elements:

cutoffs

A numeric vector of threshold values

measure

A numeric vector of sensitivity values corresponding to the threshold values

References

Ballings, M., Van den Poel, D., Threshold Independent Performance Measures for Probabilistic Classifcation Algorithms, Forthcoming.

See Also

sensitivity, specificity, accuracy, roc, auc, plot

Examples

Run this code
# NOT RUN {
data(churn)

sensitivity(churn$predictions,churn$labels)

# }

Run the code above in your browser using DataLab