Function of the AgroR package for the analysis of experiments conducted in a completely randomized, qualitative, uniform qualitative design with multiple assessments over time, however without considering time as a factor.
DICT(
trat,
time,
response,
alpha.f = 0.05,
alpha.t = 0.05,
mcomp = "tukey",
theme = theme_classic(),
geom = "bar",
xlab = "Independent",
ylab = "Response",
p.adj = "holm",
dec = 3,
fill = "gray",
error = TRUE,
textsize = 12,
labelsize = 5,
pointsize = 4.5,
family = "sans",
sup = 0,
addmean = FALSE,
legend = "Legend",
ylim = NA,
width.bar = 0.2,
size.bar = 0.8,
posi = c(0.1, 0.8),
xnumeric = FALSE,
all.letters = FALSE
)
The function returns the p-value of Anova, the assumptions of normality of errors, homogeneity of variances and independence of errors, multiple comparison test, as well as a line graph
Numerical or complex vector with treatments
Numerical or complex vector with times
Numerical vector containing the response of the experiment.
Level of significance of the F test (default is 0.05)
Significance level of the multiple comparison test (default is 0.05)
Multiple comparison test (Tukey (default), LSD ("lsd"), Scott-Knott ("sk"), Duncan ("duncan") and Kruskal-Wallis ("kw"))
ggplot2 theme (default is theme_classic())
Graph type (columns - "bar" or segments "point")
treatments name (Accepts the expression() function)
Variable response name (Accepts the expression() function)
Method for adjusting p values for Kruskal-Wallis ("none","holm","hommel", "hochberg", "bonferroni", "BH", "BY", "fdr")
Number of cells
Defines chart color (to generate different colors for different treatments, define fill = "trat")
Add error bar
Font size of the texts and titles of the axes
Font size of the labels
Point size
Font family
Number of units above the standard deviation or average bar on the graph
Plot the average value on the graph (default is TRUE)
Legend title
Define a numerical sequence referring to the y scale. You can use a vector or the `seq` command.
width error bar
size error bar
Legend position
Declare x as numeric (default is FALSE)
Adds all label letters regardless of whether it is significant or not.
Gabriel Danilo Shimizu, shimizu@uel.br
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
Principles and procedures of statistics a biometrical approach Steel, Torry and Dickey. Third Edition 1997
Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.
Practical Nonparametrics Statistics. W.J. Conover, 1999
Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentacao em Genetica e Melhoramento de Plantas. Editora UFLA.
Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.
DIC, DBCT, DQLT
rm(list=ls())
data(simulate1)
attach(simulate1)
with(simulate1, DICT(trat, tempo, resp))
with(simulate1, DICT(trat, tempo, resp, fill="rainbow",family="serif"))
with(simulate1, DICT(trat, tempo, resp,geom="bar",sup=40))
with(simulate1, DICT(trat, tempo, resp,geom="point",sup=40))
Run the code above in your browser using DataLab