Linear regression analysis of an experiment with a quantitative factor or isolated effect of a quantitative factor
polynomial(
trat,
resp,
ylab = "Response",
xlab = "Independent",
yname.poly = "y",
xname.poly = "x",
grau = NA,
theme = theme_classic(),
point = "mean_sd",
color = "gray80",
posi = "top",
textsize = 12,
se = FALSE,
ylim = NA,
family = "sans",
pointsize = 4.5,
linesize = 0.8,
width.bar = NA,
n = NA,
SSq = NA,
DFres = NA
)
Returns linear, quadratic or cubic regression analysis.
Numerical vector with treatments (Declare as numeric)
Numerical vector containing the response of the experiment.
Dependent variable name (Accepts the expression() function)
Independent variable name (Accepts the expression() function)
Y name in equation
X name in equation
Degree of the polynomial (1, 2 or 3)
ggplot2 theme (default is theme_classic())
Defines whether to plot mean ("mean"), all repetitions ("all"),mean with standard deviation ("mean_sd") or mean with standard error (default - "mean_se").
Graph color (default is gray80)
Legend position
Font size
Adds confidence interval (default is FALSE)
y-axis scale
Font family
Point size
line size (Trendline and Error Bar)
width of the error bars of a regression graph.
Number of decimal places for regression equations
Sum of squares of the residue
Residue freedom degrees
Gabriel Danilo Shimizu, shimizu@uel.br
Leandro Simoes Azeredo Goncalves
Rodrigo Yudi Palhaci Marubayashi
polynomial2, polynomial2_color
data("phao")
with(phao, polynomial(dose,comp, grau = 2))
Run the code above in your browser using DataLab