Learn R Programming

AnalyzeTS (version 2.0)

fuzzy.ts2: Abbasov Mamedova model

Description

Predicts time series by fuzziness method according to Abbasov-Manedova model.

Usage

fuzzy.ts2(ts, n = 5, w = NULL, D1 = 0, D2 = 0, C = NULL, trace = FALSE, forecast = NULL, plot = FALSE, fty = c("ts", "f"))

Arguments

ts
Observation series.
n
Number of fuzzy set.
w
The 'w' parameter.
D1
A adequate value.
D2
A adequate value.
C
A optional constant.
trace
Let trace=TRUE to print all of calculation results out to creen. Let trace=FALSE (default) to only print forecasting series out to creen.
forecast
Number of points to forecast in future.
plot
Let plot=TRUE to paint graph of obsevation series and fuzzy series. Let plot=FLASE (default) to do not paint graph.
fty
fty="f", N(length(ts)+1) = N(length(ts)) + V(length(ts)+1).

fty="ts", N(length(ts)+1) = ts(length(ts)) + V(length(ts)+1).

Value

type
Name of fuzzy model.
table1
Information about changing fuzzy sets.
table2
Observation series and changing series.
table3
The change fuzzy of observation series.
table4
Interpolate values.
table5
Forecasting values.
table6
The change fuzzy of forecasting series.
timeseries
Forecasting timeseries.
accuracy
Information about 7 accuracy of forecasting model.

References

Abbasov, A.M. and Mamedova, M.H., 2003. Application of fuzzy time series to population forecasting, Proceedings of 8th Symposion on Information Technology in Urban and Spatial Planning, Vienna University of Technology, February 25-March1, 545-552.

See Also

fuzzy.ts3

Examples

Run this code
data(population)
layout(1:2)
fuzzy.ts2(population,n=7,w=7,C=0.0001,forecast=11,fty="ts",trace=TRUE,plot=TRUE)
fuzzy.ts2(population,n=5,w=5,C=0.01,forecast=5,fty="f",plot=TRUE)

Run the code above in your browser using DataLab