#FOR THE SIZES DEFINED BY THE EUROPEAN NORMATIVE:
dataHipam <- sampleSpanishSurvey
bust <- dataHipam$bust
bustSizes <- bustSizesStandard(seq(74, 102, 4), seq(107, 131, 6))
type <- "IMO"
maxsplit <- 5 ; orness <- 0.7
ah <- c(23, 28, 20, 25, 25)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
numSizes <- 1
res_hipam <- computSizesHipamAnthropom(dataHipam, bust, bustSizes$bustCirc, numSizes,
maxsplit, orness, type, ah, FALSE)
fitmodels <- anthrCases(res_hipam, numSizes)
outliers <- trimmOutl(res_hipam, numSizes)
#FOR ANY OTHER DEFINED SIZE:
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(1900)
rand <- sample(1:600,20)
dataComp <- sampleSpanishSurvey[rand, c(2, 3, 5)]
numVar <- dim(dataComp)[2]
type <- "IMO"
maxsplit <- 5 ; orness <- 0.7
ah <- c(28, 25, 25)
dataMat <- as.matrix(dataComp)
#For reproducing results, seed for randomness:
#suppressWarnings(RNGversion("3.5.0"))
#set.seed(2013)
res_hipam_One <- list() ; class(res_hipam_One) <- "hipamAnthropom"
res_hipam_One[[1]] <- hipamAnthropom(dataMat, maxsplit = maxsplit, orness = orness,
type = type, ah = ah, verbose = FALSE)
#plotTreeHipamAnthropom(res_hipam_One, main="Proposed Hierarchical PAM Clustering \n")
fitmodels_One <- anthrCases(res_hipam_One,1)
outliers_One <- trimmOutl(res_hipam_One,1)
Run the code above in your browser using DataLab