# NOT RUN {
# }
# NOT RUN {
library(mvtnorm)
set.seed(111)
NoO=1000 #Number of obligors in each sector
Years=20
AC=0.3
PD=0.01
Psi=rmvnorm(Years,sigma=matrix(c(1,0.5,0.5,0.5,1,0.5,0.5,0.5,1),3))
PDcond1=pnorm((qnorm(PD)-sqrt(AC)*Psi[,1])/sqrt(1-AC))
PDcond2=pnorm((qnorm(PD)-sqrt(AC/2)*Psi[,2])/sqrt(1-AC/2))
PDcond3=pnorm((qnorm(PD)-sqrt(AC*2)*Psi[,3])/sqrt(1-AC*2))
DTS=cbind(rbinom(Years,NoO,PDcond1),rbinom(Years,NoO,PDcond2),rbinom(Years,NoO,PDcond3))
N=matrix(NoO,nrow = Years,ncol = 3)
Output<-analyze_AssetCorr(DTS,N)
#Bootstrap Correction and CIs
Output<-analyze_AssetCorr(DTS,N,B=100,CI_Boot=0.95)
#Double Bootstrap Correction and Jackknife
Output<-analyze_AssetCorr(DTS,N,DB=c(50,50),JC=TRUE)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab