Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (2.1-0) of this package.
Take me there.
BACCO (version 1.0-50)
Bayesian Analysis of Computer Code Output
Copy Link
Link to current version
Version
Version
2.1-0
2.0-9
2.0-7
2.0-4
2.0-2
1.1-4
1.0-58
1.0-55
1.0-50
1.0-48
1.0-47
1.0-37
1.0-28
1.0-16
1.0-14
Install
install.packages('BACCO')
Monthly Downloads
452
Version
1.0-50
License
GPL
Maintainer
Robin Hankin
Last Published
September 10th, 2023
Functions in BACCO (1.0-50)
Search all functions
D1.fun
Function to join x.star to t.vec to give matrix D1
EK.eqn10.supp
Posterior mean of K
C1
Matrix of distances from D1 to D2
Ez.eqn9.supp
Expectation as per equation 10 of KOH2001
W2
variance matrix for beta2
V1
Distance matrix
W1
Variance matrix for beta1hat
W
covariance matrix for beta
basis.toy
Toy basis functions
Vd
Variance matrix for d
V.fun
Variance matrix for observations
V2
distance between observation points
betahat.fun
Calculates MLE coefficients of linear fit
beta2hat.fun
estimator for beta2
genie
Genie datasets for approximator package
h1.toy
Basis functions
as.sublist
Converts a level one design matrix and a subsets object into a list of design matrices, one for each level
hbar.fun.toy
Toy example of hbar (section 4.2)
interpolant
Interpolates between known points using Bayesian estimation
mdash.fun
Mean of Gaussian process
hpa.fun.toy
Toy example of a hyperparameter object creation function
model
Simple model for concept checking
subset_maker
Create a simple subset object
reality
Reality
toy
A toy dataset
tr
Trace of a matrix
H.fun
H function
A
Matrix of correlations between two sets of points
betahat.app
Estimate for beta
blockdiag
Assembles matrices blockwise into a block diagonal matrix
create.new.toy.datasets
Create new toy datasets
cov.p5.supp
Covariance function for posterior distribution of z
expert.estimates
Expert estimates for Goldstein input parameters
generate.toy.observations
Er, generate toy observations
object
Optimization of posterior likelihood of hyperparameters
is.consistent
Checks observational data for consistency with a subsets object
estimator
Estimates each known datapoint using the others as datapoints
OO2002
Implementation of the ideas of Oakley and O'Hagan 2002
prob.psi1
A priori probability of psi1, psi2, and theta
phi.fun.toy
Functions to create or change hyperparameters
quad.form
Evaluate a quadratic form efficiently
tt.fun
Integrals needed in KOH2001
D2.fun
Augments observation points with parameters
V.fun.app
Variance matrix
MH
Very basic implementation of the Metropolis-Hastings algorithm
approximator-package
Bayesian approximation of computer models when fast approximations are available
c.fun
Correlations between points in parameter space
tee.fun
Returns generalized distances
scales.likelihood
Likelihood of roughness parameters
p.eqn8.supp
A postiori probability of hyperparameters
beta1hat.fun
beta1 estimator
betahat.fun.koh
Expectation of beta, given theta, phi and d
stage1
Stage 1,2 and 3 optimization on toy dataset
corr
correlation function for calculating A
dists.2frames
Distance between two points
emulator-package
Emulation of computer code output
extractor.toy
Extracts lat/long matrix and theta matrix from D2.
hdash.fun
Hdash
makeinputfiles
Makes input files for condor runs of goldstein
optimal.scales
Use optimization techniques to find the optimal scales
p.eqn4.supp
Apostiori probability of psi1
p.page4
A postiori probability of hyperparameters
tee
Auxiliary functions for equation 9 of the supplement
sigmahatsquared
Estimator for sigma squared
s.chi
Variance estimator
symmetrize
Symmetrize an upper triangular matrix
sample.n.fit
Sample from a Gaussian process and fit an emulator to the points
pad
Simple pad function
E.theta.toy
Expectation and variance with respect to theta
Pi
Kennedy's Pi notation
etahat
Expectation of computer output
is.positive.definite
Is a matrix positive definite?
latin.hypercube
Latin hypercube design matrix
results.table
Results from 100 Goldstein runs
regressor.basis
Regressor basis function
toyapps
Toy datasets for approximator package
Ez.eqn7.supp
Expectation of z given y, beta2, phi
toys
Toy datasets
prior.b
Prior linear fits
subsets.fun
Generate and test subsets