Learn R Programming

⚠️There's a newer version (2.1-0) of this package.Take me there.

BACCO (version 1.0-50)

Bayesian Analysis of Computer Code Output

Copy Link

Version

Install

install.packages('BACCO')

Monthly Downloads

452

Version

1.0-50

License

GPL

Maintainer

Robin Hankin

Last Published

September 10th, 2023

Functions in BACCO (1.0-50)

D1.fun

Function to join x.star to t.vec to give matrix D1
EK.eqn10.supp

Posterior mean of K
C1

Matrix of distances from D1 to D2
Ez.eqn9.supp

Expectation as per equation 10 of KOH2001
W2

variance matrix for beta2
V1

Distance matrix
W1

Variance matrix for beta1hat
W

covariance matrix for beta
basis.toy

Toy basis functions
Vd

Variance matrix for d
V.fun

Variance matrix for observations
V2

distance between observation points
betahat.fun

Calculates MLE coefficients of linear fit
beta2hat.fun

estimator for beta2
genie

Genie datasets for approximator package
h1.toy

Basis functions
as.sublist

Converts a level one design matrix and a subsets object into a list of design matrices, one for each level
hbar.fun.toy

Toy example of hbar (section 4.2)
interpolant

Interpolates between known points using Bayesian estimation
mdash.fun

Mean of Gaussian process
hpa.fun.toy

Toy example of a hyperparameter object creation function
model

Simple model for concept checking
subset_maker

Create a simple subset object
reality

Reality
toy

A toy dataset
tr

Trace of a matrix
H.fun

H function
A

Matrix of correlations between two sets of points
betahat.app

Estimate for beta
blockdiag

Assembles matrices blockwise into a block diagonal matrix
create.new.toy.datasets

Create new toy datasets
cov.p5.supp

Covariance function for posterior distribution of z
expert.estimates

Expert estimates for Goldstein input parameters
generate.toy.observations

Er, generate toy observations
object

Optimization of posterior likelihood of hyperparameters
is.consistent

Checks observational data for consistency with a subsets object
estimator

Estimates each known datapoint using the others as datapoints
OO2002

Implementation of the ideas of Oakley and O'Hagan 2002
prob.psi1

A priori probability of psi1, psi2, and theta
phi.fun.toy

Functions to create or change hyperparameters
quad.form

Evaluate a quadratic form efficiently
tt.fun

Integrals needed in KOH2001
D2.fun

Augments observation points with parameters
V.fun.app

Variance matrix
MH

Very basic implementation of the Metropolis-Hastings algorithm
approximator-package

Bayesian approximation of computer models when fast approximations are available
c.fun

Correlations between points in parameter space
tee.fun

Returns generalized distances
scales.likelihood

Likelihood of roughness parameters
p.eqn8.supp

A postiori probability of hyperparameters
beta1hat.fun

beta1 estimator
betahat.fun.koh

Expectation of beta, given theta, phi and d
stage1

Stage 1,2 and 3 optimization on toy dataset
corr

correlation function for calculating A
dists.2frames

Distance between two points
emulator-package

Emulation of computer code output
extractor.toy

Extracts lat/long matrix and theta matrix from D2.
hdash.fun

Hdash
makeinputfiles

Makes input files for condor runs of goldstein
optimal.scales

Use optimization techniques to find the optimal scales
p.eqn4.supp

Apostiori probability of psi1
p.page4

A postiori probability of hyperparameters
tee

Auxiliary functions for equation 9 of the supplement
sigmahatsquared

Estimator for sigma squared
s.chi

Variance estimator
symmetrize

Symmetrize an upper triangular matrix
sample.n.fit

Sample from a Gaussian process and fit an emulator to the points
pad

Simple pad function
E.theta.toy

Expectation and variance with respect to theta
Pi

Kennedy's Pi notation
etahat

Expectation of computer output
is.positive.definite

Is a matrix positive definite?
latin.hypercube

Latin hypercube design matrix
results.table

Results from 100 Goldstein runs
regressor.basis

Regressor basis function
toyapps

Toy datasets for approximator package
Ez.eqn7.supp

Expectation of z given y, beta2, phi
toys

Toy datasets
prior.b

Prior linear fits
subsets.fun

Generate and test subsets