Learn R Programming

BAS (version 1.7.1)

trCCH: Truncated Compound Confluent Hypergeometric function

Description

Compute the Truncated Confluent Hypergeometric function from Li and Clyde (2018) which is the normalizing constant in the tcch density of Gordy (1998) with integral representation:

Usage

trCCH(a, b, r, s, v, k, log = FALSE)

Arguments

a

a > 0

b

b > 0

r

r >= 0

s

arbitrary

v

0 < v

k

arbitrary

log

logical indicating whether to return values on the log scale; useful for Bayes Factor calculations

Author

Merlise Clyde (clyde@duke.edu)

Details

tr.cch(a,b,r,s,v,k) = Int_0^1/v u^(a-1) (1 - vu)^(b -1) (k + (1 - k)vu)^(-r) exp(-s u) du

This uses a more stable method for calculating the normalizing constant using R's `integrate` function rather than the version in Gordy 1998. For calculating Bayes factors that use the `trCCH` function we recommend using the `log=TRUE` option to compute log Bayes factors.

References

Gordy 1998 Li & Clyde 2018

See Also

Other special functions: hypergeometric1F1(), hypergeometric2F1(), phi1()

Examples

Run this code

# special cases
# trCCH(a, b, r, s=0, v = 1, k) is the same as
# 2F1(a, r, a + b, 1 - 1/k)*beta(a, b)/k^r

k = 10; a = 1.5; b = 2; r = 2;  
trCCH(a, b, r, s=0, v = 1, k=k) *k^r/beta(a,b)
hypergeometric2F1(a, r, a + b, 1 - 1/k, log = FALSE)

# trCCH(a,b,0,s,1,1) is the same as 
# beta(a, b) 1F1(a, a + b, -s, log=FALSE)
s = 3; r = 0; v = 1; k = 1
beta(a, b)*hypergeometric1F1(a, a+b, -s, log = FALSE)
trCCH(a, b, r, s, v, k)

# Equivalence with the Phi1 function 
a = 1.5; b = 3; k = 1.25; s = 400;  r = 2;  v = 1; 

phi1(a, r,  a + b, -s, 1 - 1/k,  log=FALSE)*(k^-r)*gamma(a)*gamma(b)/gamma(a+b)
trCCH(a,b,r,s,v,k)

Run the code above in your browser using DataLab