Learn R Programming

BAS (version 1.7.3)

coef.bas: Coefficients of a Bayesian Model Average object

Description

Extract conditional posterior means and standard deviations, marginal posterior means and standard deviations, posterior probabilities, and marginal inclusions probabilities under Bayesian Model Averaging from an object of class 'bas'

Usage

# S3 method for bas
coef(object, n.models, estimator = "BMA", ...)

# S3 method for coef.bas print(x, digits = max(3, getOption("digits") - 3), ...)

Value

coefficients returns an object of class coef.bas with the following:

conditionalmeans

a matrix with conditional posterior means for each model

conditionalsd

standard deviations for each model

postmean

marginal posterior means of each regression coefficient using BMA

postsd

marginal posterior standard deviations using BMA

postne0

vector of posterior inclusion probabilities, marginal probability that a coefficient is non-zero

Arguments

object

object of class 'bas' created by BAS

n.models

Number of top models to report in the printed summary, for coef the default is to use all models. To extract summaries for the Highest Probability Model, use n.models=1 or estimator="HPM".

estimator

return summaries for a selected model, rather than using BMA. Options are 'HPM' (highest posterior probability model) ,'MPM' (median probability model), and 'BMA'

...

other optional arguments

x

object of class 'coef.bas' to print

digits

number of significant digits to print

Author

Merlise Clyde clyde@duke.edu

Details

Calculates posterior means and (approximate) standard deviations of the regression coefficients under Bayesian Model averaging using g-priors and mixtures of g-priors. Print returns overall summaries. For fully Bayesian methods that place a prior on g, the posterior standard deviations do not take into account full uncertainty regarding g. Will be updated in future releases.

References

Liang, F., Paulo, R., Molina, G., Clyde, M. and Berger, J.O. (2005) Mixtures of g-priors for Bayesian Variable Selection. Journal of the American Statistical Association. 103:410-423.
tools:::Rd_expr_doi("10.1198/016214507000001337")

See Also

bas, confint.coef.bas

Other bas methods: BAS, bas.lm(), confint.coef.bas(), confint.pred.bas(), diagnostics(), fitted.bas(), force.heredity.bas(), image.bas(), plot.confint.bas(), predict.bas(), predict.basglm(), summary.bas(), update.bas(), variable.names.pred.bas()

Examples

Run this code

data("Hald")
hald.gprior =  bas.lm(Y~ ., data=Hald, n.models=2^4, alpha=13,
                      prior="ZS-null", initprobs="Uniform", update=10)
coef.hald.gprior = coefficients(hald.gprior)
coef.hald.gprior
plot(coef.hald.gprior)
confint(coef.hald.gprior)

#Estimation under Median Probability Model
coef.hald.gprior = coefficients(hald.gprior, estimator="MPM")
coef.hald.gprior
plot(coef.hald.gprior)
plot(confint(coef.hald.gprior))


coef.hald.gprior = coefficients(hald.gprior, estimator="HPM")
coef.hald.gprior
plot(coef.hald.gprior)
confint(coef.hald.gprior)

# To add estimation under Best Predictive Model


Run the code above in your browser using DataLab