Creates an image of the models selected using bas
.
# S3 method for bas
image(
x,
top.models = 20,
intensity = TRUE,
prob = TRUE,
log = TRUE,
rotate = TRUE,
color = "rainbow",
subset = NULL,
drop.always.included = FALSE,
offset = 0.75,
digits = 3,
vlas = 2,
plas = 0,
rlas = 0,
...
)
A BMA object of type 'bas' created by BAS
Number of the top ranked models to plot
Logical variable, when TRUE image intensity is proportional to the probability or log(probability) of the model, when FALSE, intensity is binary indicating just presence (light) or absence (dark) of a variable.
Logical variable for whether the area in the image for each model should be proportional to the posterior probability (or log probability) of the model (TRUE) or with equal area (FALSE).
Logical variable indicating whether the intensities should be based on log posterior odds (TRUE) or posterior probabilities (FALSE). The log of the posterior odds is for comparing the each model to the worst model in the top.models.
Should the image of models be rotated so that models are on the y-axis and variables are on the x-axis (TRUE)
The color scheme for image intensities. The value "rainbow" uses the rainbow palette. The value "blackandwhite" produces a black and white image (greyscale image)
indices of variables to include/exclude in plot
logical variable to drop variables that are always forced into the model. FALSE by default.
numeric value to add to intensity
number of digits in posterior probabilities to keep
las parameter for placing variable names; see par
las parameter for posterior probability axis
las parameter for model ranks
Other parameters to be passed to the image
and axis
functions.
Merlise Clyde clyde@stat.duke.edu
Creates an image of the model space sampled using bas
. If a
subset of the top models are plotted, then probabilities are renormalized
over the subset.
Clyde, M. (1999) Bayesian Model Averaging and Model Search Strategies (with discussion). In Bayesian Statistics 6. J.M. Bernardo, A.P. Dawid, J.O. Berger, and A.F.M. Smith eds. Oxford University Press, pages 157-185.
bas
Other bas methods:
BAS
,
bas.lm()
,
coef.bas()
,
confint.coef.bas()
,
confint.pred.bas()
,
diagnostics()
,
fitted.bas()
,
force.heredity.bas()
,
plot.confint.bas()
,
predict.bas()
,
predict.basglm()
,
summary.bas()
,
update.bas()
,
variable.names.pred.bas()
Other bas plots:
plot.bas()
,
plot.coef.bas()
require(graphics)
data("Hald")
hald.ZSprior <- bas.lm(Y ~ ., data = Hald, prior = "ZS-null")
image(hald.ZSprior, drop.always.included = TRUE) # drop the intercept
Run the code above in your browser using DataLab