Learn R Programming

BASiCS (version 1.1.0)

BASiCS_Sim: Generates synthetic data according to the model implemented in BASiCS

Description

BASiCS_Sim creates a simulated dataset from the model implemented in BASiCS.

Usage

BASiCS_Sim(Mu, Mu_spikes, Delta, Phi, S, Theta)

Arguments

Mu

Gene-specific mean expression parameters \(\mu_i\) for all biological genes (vector of length q.bio, all elements must be positive numbers)

Mu_spikes

\(\mu_i\) for all technical genes defined as true input molecules (vector of length q-q.bio, all elements must be positive numbers)

Delta

Gene-specific biological over-dispersion parameters \(\delta_i\), biological genes only (vector of length q.bio, all elements must be positive numbers)

Phi

Cell-specific mRNA content normalising parameters \(\phi_j\) (vector of length n, all elements must be positive numbers and the sum of its elements must be equal to n)

S

Cell-specific technical normalising parameters \(s_j\) (vector of length n, all elements must be positive numbers)

Theta

Technical variability parameter \(\theta\) (must be positive)

Value

An object of class '>SingleCellExperiment, including synthetic data generated by the model implemented in BASiCS.

References

Vallejos, Marioni and Richardson (2015). PLoS Computational Biology.

Examples

Run this code
# NOT RUN {
# Simulated parameter values for 10 genes
# (7 biogical and 3 spike-in) measured in 5 cells
Mu <- c(8.36, 10.65, 4.88, 6.29, 21.72, 12.93, 30.19)
Mu_spike <-  c(1010.72, 7.90, 31.59)
Delta <- c(1.29, 0.88, 1.51, 1.49, 0.54, 0.40, 0.85)
Phi <- c(1.00, 1.06, 1.09, 1.05, 0.80)
S <- c(0.38, 0.40, 0.38, 0.39, 0.34)
Theta <- 0.39

Data <- BASiCS_Sim(Mu, Mu_spike, Delta, Phi, S, Theta)
head(assay(Data))
dim(assay(Data))
metadata(Data)$SpikeInput
isSpike(Data)

# }

Run the code above in your browser using DataLab