Learn R Programming

BDgraph (version 2.23)

BDgraph-package: Bayesian Structure Learning in Graphical Models

Description

The R package BDgraph provides statistical tools for Bayesian structure learning in undirected graphical models.The package is implemented the recent improvements in the Bayesian literature, including Mohammadi and Wit (2015) and Mohammadi et al. (2015). The computationally intensive tasks of the package is implemented in C++ and interfaced with R, to speed up the computations. Besides, the package contains several functions for simulation and visualization, as well as three multivariate datasets taken from the literature.

Arguments

Details

The package includes 10 main functions: bdgraph Search algorithm in graphical models bdgraph.sim Synthetic graph data generator bdgraph.npn Nonparametric transfer compare Comparing the result phat Estimated posterior link probabilities plotcoda Convergence plot plotroc ROC plot rgwish Sampling from G-Wishart distribution select Graph selection traceplot Trace plot of graph size

References

Mohammadi, A. and E. Wit (2015). Bayesian Structure Learning in Sparse Gaussian Graphical Models, Bayesian Analysis, 10(1):109-138 Mohammadi, A. and E. Wit (2015). BDgraph: An R Package for Bayesian Structure Learning in Graphical Models, arXiv:1501.05108 Mohammadi, A., F. Abegaz Yazew, E. van den Heuvel, and E. Wit (2015). Bayesian Gaussian Copula Graphical Modeling for Dupuytren Disease, arXiv:1501.04849 Lenkoski, A. (2013). A direct sampler for G-Wishart variates, Stat, 2:119-128