Extract links from an adjacency matrix or an object of calsses "sim" from function bdgraph.sim and
"graph" from function graph.sim.
adj2link( adj )matrix corresponding to the extracted links from graph structure.
adjacency matrix corresponding to a graph structure in which \(a_{ij}=1\) if there is a link between notes \(i\) and \(j\), otherwise \(a_{ij}=0\).
It can be an object with S3 class "sim" from function bdgraph.sim.
It can be an object with S3 class "graph" from function graph.sim.
Reza Mohammadi a.mohammadi@uva.nl
Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning in Graphical Models, Journal of Statistical Software, 89(3):1-30, tools:::Rd_expr_doi("10.18637/jss.v089.i03")
Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical Models, Bayesian Analysis, 10(1):109-138, tools:::Rd_expr_doi("10.1214/14-BA889")
Mohammadi, R., Massam, H. and Letac, G. (2021). Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models, Journal of the American Statistical Association, tools:::Rd_expr_doi("10.1080/01621459.2021.1996377")
Mohammadi, A. et al (2017). Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models, Journal of the Royal Statistical Society: Series C, 66(3):629-645, tools:::Rd_expr_doi("10.1111/rssc.12171")
Dobra, A. and Mohammadi, R. (2018). Loglinear Model Selection and Human Mobility, Annals of Applied Statistics, 12(2):815-845, tools:::Rd_expr_doi("10.1214/18-AOAS1164")
Pensar, J. et al (2017) Marginal pseudo-likelihood learning of discrete Markov network structures, Bayesian Analysis, 12(4):1195-215, tools:::Rd_expr_doi("10.1214/16-BA1032")
link2adj, graph.sim
# Generating a 'random' graph
adj <- graph.sim( p = 6, vis = TRUE )
adj2link( adj )
Run the code above in your browser using DataLab