if (FALSE) {
set.seed( 10 )
# - - Example 1
# Generating multivariate normal data from a 'random' graph
data.sim <- bdgraph.sim( n = 100, p = 10, size = 15, vis = TRUE )
bdgraph.obj <- bdgraph( data = data.sim, iter = 1000, save = TRUE )
summary( bdgraph.obj )
# Confusion Matrix
conf.mat( actual = data.sim, pred = bdgraph.obj )
conf.mat.plot( actual = data.sim, pred = bdgraph.obj )
# To compare our result with true graph
compare( data.sim, bdgraph.obj, main = c( "Target", "BDgraph" ), vis = T )
# Running algorithm with starting points from previous run
bdgraph.obj2 <- bdgraph( data = data.sim, g.start = bdgraph.obj )
compare( data.sim, list( bdgraph.obj, bdgraph.obj2 ),
main = c( "Target", "Frist run", "Second run" ) )
# - - Example 2
# Generating mixed data from a 'scale-free' graph
data.sim <- bdgraph.sim( n = 200, p = 7, type = "mixed", graph = "scale-free", vis = TRUE )
bdgraph.obj <- bdgraph( data = data.sim, method = "gcgm" )
summary( bdgraph.obj )
compare( data.sim, bdgraph.obj, vis = T )
conf.mat( actual = data.sim, pred = bdgraph.obj )
conf.mat.plot( actual = data.sim, pred = bdgraph.obj )
}
Run the code above in your browser using DataLab