Learn R Programming

BDgraph (version 2.70)

precision: Estimated precision matrix

Description

Provides the estimated precision matrix.

Usage

precision( bdgraph.obj, round = 2 )

Value

matrix which corresponds the estimated precision matrix.

Arguments

bdgraph.obj

object of S3 class "bdgraph", from function bdgraph. It also can be an object of S3 class "ssgraph", from the function ssgraph::ssgraph() of R package ssgraph::ssgraph().

round

value for rounding all probabilities to the specified number of decimal places.

Author

Reza Mohammadi a.mohammadi@uva.nl

References

Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning in Graphical Models, Journal of Statistical Software, 89(3):1-30, tools:::Rd_expr_doi("10.18637/jss.v089.i03")

Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical Models, Bayesian Analysis, 10(1):109-138, tools:::Rd_expr_doi("10.1214/14-BA889")

Mohammadi, R., Massam, H. and Letac, G. (2021). Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models, Journal of the American Statistical Association, tools:::Rd_expr_doi("10.1080/01621459.2021.1996377")

Dobra, A. and Mohammadi, R. (2018). Loglinear Model Selection and Human Mobility, Annals of Applied Statistics, 12(2):815-845, tools:::Rd_expr_doi("10.1214/18-AOAS1164")

Mohammadi, A. et al (2017). Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models, Journal of the Royal Statistical Society: Series C, 66(3):629-645, tools:::Rd_expr_doi("10.1111/rssc.12171")

See Also

bdgraph, covariance, plinks

Examples

Run this code
if (FALSE) {
# Generating multivariate normal data from a 'circle' graph
data.sim <- bdgraph.sim( n = 70, p = 6, graph = "circle", vis = TRUE )

bdgraph.obj   <- bdgraph( data = data.sim )

precision( bdgraph.obj ) # Estimated precision matrix
  
data.sim $ K   # True precision matrix
}

Run the code above in your browser using DataLab