Learn R Programming

BDgraph (version 2.73)

predict.bdgraph: Predict function for S3 class "bdgraph"

Description

Provides predict values of the results for function bdgraph.

Usage

# S3 method for bdgraph
predict( object, iter = 1, ... )

Value

a matrix containing the predicted datasets, corresponding to the samples from the joint posterior disribtuion.

Arguments

object

object of S3 class "bdgraph", from function bdgraph.

iter

number of predictions.

...

additional parameters.

Author

Reza Mohammadi a.mohammadi@uva.nl and Ernst Wit

References

Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning in Graphical Models, Journal of Statistical Software, 89(3):1-30, tools:::Rd_expr_doi("10.18637/jss.v089.i03")

Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical Models, Bayesian Analysis, 10(1):109-138, tools:::Rd_expr_doi("10.1214/14-BA889")

Mohammadi, R., Massam, H. and Letac, G. (2023). Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models, Journal of the American Statistical Association, tools:::Rd_expr_doi("10.1080/01621459.2021.1996377")

Dobra, A. and Mohammadi, R. (2018). Loglinear Model Selection and Human Mobility, Annals of Applied Statistics, 12(2):815-845, tools:::Rd_expr_doi("10.1214/18-AOAS1164")

Vogels, L., Mohammadi, R., Schoonhoven, M., and Birbil, S.I. (2023) Bayesian Structure Learning in Undirected Gaussian Graphical Models: Literature Review with Empirical Comparison, arXiv preprint, tools:::Rd_expr_doi("10.48550/arXiv.2307.02603")

Mohammadi, R., Schoonhoven, M., Vogels, L., and Birbil, S.I. (2023) Large-scale Bayesian Structure Learning for Gaussian Graphical Models using Marginal Pseudo-likelihood, arXiv preprint, tools:::Rd_expr_doi("10.48550/arXiv.2307.00127")

Mohammadi, A. et al (2017). Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models, Journal of the Royal Statistical Society: Series C, 66(3):629-645, tools:::Rd_expr_doi("10.1111/rssc.12171")

See Also

bdgraph, bdgraph.mpl, bdgraph.dw

Examples

Run this code
if (FALSE) {
# Generating multivariate normal data from a 'random' graph
data.sim <- bdgraph.sim( n = 50, p = 6, size = 7, vis = TRUE )
   
bdgraph.obj <- bdgraph( data = data.sim )
   
predict( bdgraph.obj, iter = 20 )
}

Run the code above in your browser using DataLab