The `bma_posterior` function samples posterior distributions of graph
parameters (e.g., partial correlations or precision matrices) based on the
graph structures sampled during a Bayesian graph search performed by
ggm_search
.
bma_posterior(object, param = "pcor", iter = 5000, progress = TRUE)
A list containing posterior samples and the Bayesian Model Averaged parameter estimates.
A ggm_search object
Compute BMA on either partial correlations "pcor" (default) or on precision matrix "Theta".
Number of samples to be drawn, defaults to 5,000
Show progress bar, defaults to TRUE
This function incorporates uncertainty in both graph structure and parameter estimation, providing Bayesian Model Averaged (BMA) parameter estimates.
Use `bma_posterior` when detailed posterior inference on graph parameters is needed, or to refine results obtained from `ggm_search`.
ggm_search